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I will briefly introduce a methodology that has literally
revolutionised statistical inference for complex models in the last
10-15 years.

For the last 30 years advancements in computer hardware have
enabled modellers to become more and more ambitious.

Complex models are needed to make sense of advanced
experiments and multivariate (large) datasets.

However the advancements of statistical algorithms didn’t proceed at
the same (fast) pace as hardware and modelling advancements.

We wanted to consider realistic model for our data, but often we
could not because of the lack of flexible statistical methods.
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Most real-life modelling is way more complex than examples from courses
textbooks. The likelihood of the object below might be totally out of reach.

[Pic from Schadt et al. (2009) doi:10.1038/nrd2826]
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What we typically want is the likelihood function for model
parameters θ:

We have some data: yo.

the likelihood function: p(yo|θ)

We consider data as the outcome of some probabilistic model,
and write yo ∼ p(y|θ = θ0)

θ0 is the unknown ground-truth value of θ.

Main issue

For realistically complex models, the likelihood function is
unavailable in closed form.

Hence exact likelihood based inference is often not possible.
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A paradigm shift is the concept of generative model.

You code a mathematical model M(θ) as an idealized representation
of the phenomenon under study.

θ∗ →M(θ∗)→ y∗

As long as we are able to run an instance of the model, we
simulate/generate artificial data y∗with y∗ ∼ p(y∗|θ = θ∗).

So we have obtained a random realization y∗ of the generative model
M(θ)

Therefore the simulator M(θ) defines the model pdf p(y|θ)
implicitly!
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We can use simulations from the generative model to produce
inference about θ, without explicit knowledge of the likelihood
p(y|θ).

This is at the basis of likelihood-free methods
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ABC, approximate Bayesian computation

ABC is probably the most important likelihood-free methodology.

We start by imposing a prior π(θ).

The first and simplest ABC algorithm is called ABC rejection sampling.

1 simulate from the prior θ∗ ∼ π(θ)

2 plug θ∗ →M(θ∗)→ y∗

3 if ‖ y∗ − yo ‖< ε accept θ∗ otherwise discard. Go to step 1 and repeat
many times.

Each accepted pair (θ∗, y∗) is from the augmented-posterior πε(θ, y∗|yo).

But we do not really care for y∗, so if we retain only accepted θ∗ then

θ∗ ∼ πε(θ|y)
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Say that θ∗ has been accepted by the ABC rejection sampling. Then:

if ε = 0 then θ∗ ∼ π(θ|y), the exact posterior

if ε =∞ then θ∗ ∼ π(θ), the prior
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Simulated data y∗ inside the blue circle correspond to accepted
parameters θ∗.
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Bonus slide for the maths enthusiast

ABC rejection sampling produces draws from the joint “augmented
posterior” πε(θ, y∗|yo) where

πε(θ, y∗|yo) ∝ Iε(y∗, yo)p(y∗|θ∗)π(θ∗)

where Iε(y∗, yo) equals 1 if ‖ y∗ − yo ‖< ε and 0 otherwise.

However, in reality we do not need to store the y∗ (we can just discard
those immediately after we have evaluated ‖ y∗ − yo ‖< ε), and then
θ∗ ∼ πε(θ|yo) where

πε(θ|yo) ∝ π(θ∗)

∫
Y

Iε(y∗, yo)p(y∗|θ∗)dy∗
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Toy model

Let’s try something really trivial. We show how ABC rejection can
become easily inefficient.

Suppose we have n = 5 i.i.d. observations yi ∼ Weibull(2, 5).

Want to estimate parameters of the Weibull, so θ0 = (2, 5) = (a, b)
are the true values.

take ‖ yo − y∗ ‖=
√∑n

i=1(y
o
i − y∗i )2 (you can try a different

distance, this is not really crucial).

We’ll use different thresholds ε.

Run 50,000 iterations of ABC rejection.
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Wide priors for the “shape” parameter a ∼ U(0.01, 6) and “scale”
b ∼ U(0.01, 10).

Try ε = 20. True parameter values in red.
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We are evidently sampling from the prior. Must reduce ε. About 92%
draws were accepted. Way too large percentage!
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Reduce ε from ε = 20 to ε = 3
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About 1% of the produced simulations has been accepted.

Of course n = 5 is a very small sample size, so inference quality is
necessarily limited, but you got the idea of the method.
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Curse of dimensionality

results will degrade for a larger sample size n because of a
“necessarily too large” ε;

even for a moderately long dataset yo, how likely is that we
simulate a y∗ such that

∑n
i=1(yi − y∗i )

2 < ε for small ε?
Very unlikely.

inevitably, we’ll be forced to enlarge ε thus degrading the quality
of the inference.

Serious trade-off between computational efficience and statistical
precision.
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Here we take n = 200. To compare with our “best” previous result,
we use ε = 31 (to obtain again a 1% acceptance rate on 50,000
iterations).
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Notice shape is completely off!

The approach is just not going to be of any practical use with large
datasets.
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Break the curse of dimensionality

Compress data information using some summary statistics S(y).

Example: S(y) may contain sample mean, standard deviation,
autocorrelations, quantiles etc.

Idea: instead of comparing yo with y∗, compare S(yo) with S(y∗).

Requirements:

S(·) should be “informative” regarding θ, as we give up on using
the full data y.

S(·) should not be too large. Ideally dim(S) ≡ dim(θ)
[Fearnhed& Prangle ’12].1

1Fearnhead & Prangle (2012). JRSS-B, 74(3), 419-474.
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ABC rejection with summaries (Pritchard et al.2)

1 simulate from the prior θ∗ ∼ π(θ)

2 simulate M(θ∗)→ y∗, compute S(y∗)
3 if ‖ S(y∗) − S(yo) ‖< ε store θ∗. Go to step 1 and repeat.

Samples are from πε(θ|S(yo))

with
πε(θ|S(yo)) ∝ π(θ∗)

∫
Y

IAε,yo (y∗)p(y∗|θ∗)dy∗

Aε,yo(y∗) = {y∗ ∈ Y; ‖ S(y∗) − S(yo) ‖< ε}.

2Pritchard et al. 1999, Molecular Biology and Evolution, 16:1791-1798.
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Weibull example, reprise with n = 200

Set S(y) = (sample mean of y, sample SD of y) and similarly for y∗.
Set n = 200. Use ε = 0.35.
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This time we have captured both shape and scale (with 1%
acceptance).

Also, enlarging n would not cause problems→ robust comparisons
thanks to S(·).
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Using summary statistics clearly introduces a further level of
approximation. Except when S(·) is sufficient for θ (carries the same
info about θ as the whole yo).

When S(·) is a set of sufficient statistics for θ,

πε(θ|S(yo)) = πε(θ|yo)

But then again when the distribution of yo is not in the exponential
family, we basically have no hope to construct sufficient statistics.
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For this toy model, exact inference is possible.
Did we obtain an accurate approximation to the exact posterior?
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Exact posteriors (via MCMC) are in red.
ABC has 2 sources of approximation:

we used arbitrary non-sufficient statistics.
ε > 0
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Beyond ABC rejection

ABC rejection is the simplest example of ABC algorithm.

It generates independent draws and can be coded into an
embarrassingly parallel algorithm. However in can be very
inefficient.

Parameters are proposed from the prior π(θ). A prior does not
exploit the information of already accepted parameters.

Unless π(θ) is somehow similar to the posterior, many proposals will
be rejected for moderately small ε.

A natural approach is to consider ABC within an MCMC algorithm.

In a MCMC with random walk proposals, the proposed parameter
explores a neighbourhood of the last accepted parameter.
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ABC-MCMC

Integrating ABC within MCMC is very simple [Marjoram et al.
2003]

Notation: write s∗ ≡ S(y∗), so ≡ S(yo).
and Iε(s∗, so) equals 1 if ||s∗ − so|| < ε, and 0 otherwise.

1 sample proposal θ∗ ∼ q(θ∗|θ#)

2 plug θ∗ →M(θ∗)→ y∗ → s∗

3 compute acceptance ratio:

ratio :=
Iε(s∗, so)π(θ∗)

Iε(s#, so)π(θ#)
× q(θ#|θ∗)

q(θ∗|θ#)

4 simulate u ∼ U(0, 1), accept θ∗ if u < ratio.

Umberto Picchini
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The previous algorithm produces dependent samples from the
“augmented” posterior πε(θ, s∗|so).

This means that if we disregard s∗, and retain only θ∗, we have

θ∗ ∼ πε(θ|so)

This is just another way to sample from an approximated posterior.
Using a more informed proposal function than the prior.
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Example: stochastic Ricker model

{
(observations): yt ∼ Poisson(φNt)

(unobservable process): Nt = r · Nt−1 · e−Nt−1+et , et ∼iid N(0,σ2)

It can be used to describe the evolution in time of a population of size
Nt.

r is the intrinsic growth rate of the population;

φ is a scale parameter

et interpreted as environmental noise.

This is a hidden Markov model, as the dynamics of {Nt} are
Markovian and we assume measurements y1:T to be conditionally
independent given {Nt}.
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the data

We simulated 200 time points from the model, with
log r = 3.8, logφ = 2.3, logσ = −1.2
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Summary statistics

We used the 13 summary statistics suggested in Wood 2010. These
include:

the sample mean of observations ȳ;

number of zeros in the dataset;

autocovariances up to lag 5;

and six more summaries...(not important to be mentioned here,
see the reference above).

So we have s(yo) = (ȳ, #zeros, autocov lag1, ..., autocov lag5, ...).

Umberto Picchini
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ABC-MCMC traces

We performed 200,000 ABC-MCMC iterations with decreasing εt.
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Using “particle marginal methods” we can obtain exact inference
(blue) and compare it to ABC-MCMC (red)
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Summary

ABC allows you to produce approximate inference for models
having an intractable/unknown likelihood function.

in our examples we never needed to know the likelihood;

ABC is completely plug-and-play: it only requires the ability to
computer-simulate artificial data.

the main difficulty is to specify “informative” summary statistics.

when summaries are not informative and ε is too large results
will be poor.

tuning ABC is not straightforward. Many available resources
though...
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ABC book

Something to look forward to (promised for November 2018)
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Software (coloured links are clickable)

EasyABC, R package. Research article.

abc, R package. Research article

abctools, R package. Research article. Focusses on tuning.

A list with more options here .

examples with implemented model simulators (useful to
incorporate in your programs).

Umberto Picchini

https://cran.r-project.org/web/packages/EasyABC/index.html
http://onlinelibrary.wiley.com/doi/10.1111/2041-210X.12050/abstract
https://cran.r-project.org/web/packages/abc/index.html
http://onlinelibrary.wiley.com/doi/10.1111/j.2041-210X.2011.00179.x/abstract
https://cran.r-project.org/web/packages/abctools/index.html
https://journal.r-project.org/archive/2015-2/nunes-prangle.pdf
https://en.wikipedia.org/wiki/Approximate_Bayesian_computation#Software
https://github.com/dennisprangle/LFexamples


Reviews

Fairly extensive but accessible reviews:

1 Sisson and Fan 2010

2 (with applications in ecology) Beaumont 2010

3 Marin et al. 2010

Simpler introductions:

1 Sunnåker et al. 2013

2 (with applications in ecology) Hartig et al. 2013

Review specific for dynamical models:

1 Jasra 2015
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http://arxiv.org/abs/1001.2058
http://www.annualreviews.org/doi/abs/10.1146/annurev-ecolsys-102209-144621
http://link.springer.com/article/10.1007/s11222-011-9288-2
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002803
http://onlinelibrary.wiley.com/doi/10.1111/j.1461-0248.2011.01640.x/abstract
http://arxiv.org/abs/1401.0265


Determination of summary statistics

1 review paper by Blum et al. 2013 on dimension reduction
methods for ABC;

2 Fearnhed and Prangle 2012 (a JRSS-B discussion paper).
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https://projecteuclid.org/euclid.ss/1369147911
https://doi.org/10.1111/j.1467-9868.2011.01010.x


Blog posts and slides

1 Christian P. Robert often blogs about ABC (and beyond: it’s a
fantastic blog!)

2 an intro to ABC by Darren J. Wilkinson

3 Two posts by Rasmus Bååth here and here

4 Tons of slides at Slideshare.
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https://xianblog.wordpress.com/
https://darrenjw.wordpress.com/2013/03/31/introduction-to-approximate-bayesian-computation-abc/
http://www.sumsar.net/blog/2014/10/tiny-data-and-the-socks-of-karl-broman/
http://www.sumsar.net/blog/2015/07/tiny-data-and-the-socks-of-karl-broman-the-movie/
http://www.slideshare.net/search/slideshow?searchfrom=header&q=approximate+bayesian+computation&ud=any&ft=all&lang=**&sort=

