Inference in ecology and
 evolution beyond generalised linear mixed models

Reinder Radersma

Dept. of Biology Lung University
 target $t=$ cauchy_-_pdf(sigma_ $p \mid 0,0.1$) + cauchy_pudf(sigma_p target $+=$ cauchy-

Structure of GLMMs

"random" effects
 "fixed" effects

Stan, a flexible language and powerful inference library

brm(angle \sim recipe * temperature $+(1 \mid$ recipe:replicate), data = cake)

```
data {
    int<lower=0> N; // number of data items
    int<lower=0> K; // number of predictors
    matrix[N, K] x; // predictor matrix
    vector[N] y; // outcome vector
    }
parameters {
    real alpha; // intercept
    vector[K] beta; // coefficients for predictors
    real<lower=0> sigma; // error scale
    }
```

http://mc-stan.org

Extending GLMMs

2 GLMMs
with shared
"random" effects

Latent variable modeling

Survival analysis with imperfect detection

Daphnia as model for adaptive maternal effects

2 GLMMs, shared "random" effects

$N_{\text {mothers }}=233$
$N_{\text {offspring }}=804$
$N_{\text {genotypes }}=7$

Adaptive maternal effects present, though small and accumulative

(b) effect sizes

Heritability of social behaviour

Latent variable model

Genes play a role, albeit effect is small

year effects

heritability and repeatability

Gender bias in science

Why Does the Gender Gap Still

Persist?

Fewer girls are entering STEM -still!-

Retention due to work-life integration \& cultural issues: the 'Leaky Pipeline’

WEB OF SCIENCE ${ }^{\text {m }}$

	A	B	C	D	E	F	G		$\underline{1}$	J
1	gender	age	first.y.pub	last.y.pub	pub.y. 08	pub.y. 09	p^{\prime} - $\mathrm{y} \cdot 10$	pub.y. 11	pub.y. 12	b.y. 13
2	F	1	2007	2012	2	1	1	0	1	0
3	F	1	2007	2010	2	2	- 1	0		0
4	F	1	2007	2010	0	3	1	\square	0	0
5	F	1	2007	2012	1	0	4	0	1	0
6	F	1	2007	2013	2	2	3	0	0	1
7	F	1	2007	2010	0	0	1	0	0	0
8	F	1	2007	2012	0	0	0	1	1	0
9	F	1	2007	2013	5	11	15	9	12	11
10	F	1	2007	2013	1	1	2	2	3	1
11	F	1	2007	2013	2	2	4	1	3	4
12	F	1	2007	2011	0	1	0	1	0	0
13	F	1	2007	2011	1	1	0	3	0	0
14	F	1	2007	2013	1	0	1	0	0	1
15	F	1	2007	2013	2	3	2	6	0	4
16	F	1	2007	2011	0	0	0	1	0	0
17	F	1	2007	2012	3	3	6	3	2	0
18	F	1	2007	2013	0	0	0	0	0	2
19	F	1	2007	2013	10	13	12	8	14	7
20	F	1	2007	2013	1	1	3	2	1	1
21	F	1	2007	2013	2	3	4	9	6	1
22	F	1	2007	2013	0	0	0	0	0	1
23	F	1	2007	2008	1	0	0	0	0	0
24	F	1	2007	2011	0	0	1	3	0	0
25	F	1	2007	2009	2	2	0	0	0	0
26	F	1	2007	2010	0	0	1	0	0	0

Survival model with imperfect detection

Gap is closing, but increment of small differences adds up

Acknowledgements

Lund University
Tobias Uller
Alexander Hegg
U. of New South Wales

Dan Noble

U. of Bern

Bernhard Voelkl
U. of Manitoba

Colin Garroway
U. of Oxford
Ben Sheldon
Josh Firth

U. of Bern Bernard Voelkl Indiana University Cassidy Sugimoto
U. of Manitoba

Colin Garroway
Université de Montréal
Vincent Larivière
U. of Oxford Ella Cole

