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Stan, a flexible language and 
powerful inference library

data {
int<lower=2> K;                      // capture events
int<lower=0> I;                      // number of individuals
int<lower=0> Is;                     // index of last female
int<lower=0> max_age;                // number of age classes
int<lower=0,upper=1> X[I,K];         // X[i,k]: individual i captured at k
int<lower=0> age[I];                 // individual age
int<lower=0> last[I];                // last observation
vector[I] cov;                       // individual covariate
int<lower=1> N;                      // sum of all last observations
}

parameters {
matrix<lower=-10,upper=10> [max_age,2] phi_f;  // survival women
vector<lower=-10,upper=10> [max_age] p_f;    // survival men
matrix<lower=-10,upper=10> [max_age,2] phi_m;  // visibility women
vector<lower=-10,upper=10> [max_age] p_m;    // visibility men
}

transformed parameters {
real<lower=0,upper=1>chi[I,K+1]; // probability that an individual is never              

// recaptured after its last capture

{
int k;
// FEMALES
for (i in 1:Is) {
chi[i,K+1] = 1.0;
k = K;
while (k > 0) {
chi[i,k] = (1 -inv_logit(phi_f[age[i],1]+phi_f[age[i],2]*cov[i])) +    
inv_logit(phi_f[age[i],1]+phi_f[age[i],2]*cov[i]) * 
(1 - inv_logit(p_f[age[i]])) * chi[i,k+1];
k = k - 1;

}
}

// MALES
for (i in (Is+1):I) {
chi[i,K+1] = 1.0;
k = K;
while (k > 0) {
chi[i,k] = (1 -inv_logit(phi_m[age[i],1]+phi_m[age[i],2]*cov[i])) + 
inv_logit(phi_m[age[i],1]+phi_m[age[i],2]*cov[i]) * 
(1 - inv_logit(p_m[age[i]])) * chi[i,k+1];
k = k - 1;

}
}
}

}

model {

// FEMALES
for (i in 1:Is) {
if(last[i]>0){
for (k in 1:last[i]) {
target += log_inv_logit(phi_f[age[i],1]+phi_f[age[i],2]*cov[i]);
if (X[i,k] == 1)
target += log_inv_logit(p_f[age[i]]);

else
target += log1m_inv_logit(p_f[age[i]]);

}
}
target += log(chi[i,last[i]+1]);

}

// MALES
for (i in (Is+1):I) {
if(last[i]>0){
for (k in 1:last[i]) {
target += log_inv_logit(phi_m[age[i],1]+phi_m[age[i],2]*cov[i]);
if (X[i,k] == 1)
target += log_inv_logit(p_m[age[i]]);

else
target += log1m_inv_logit(p_m[age[i]]);

}
}

target += log(chi[i,last[i]+1]);
}

phi_f[,1] ~ normal(0,1);
phi_f[,2] ~ normal(0,1);
p_f ~ normal(0,1);
phi_m[,1] ~ normal(0,1);
phi_m[,2] ~ normal(0,1);
p_m ~ normal(0,1);
}

generated quantities {
int n;
vector[N] log_lik;
n = 1;

// FEMALES
for (i in 1:Is) {
for (k in 1:last[i]) {
log_lik[n] = bernoulli_logit_lpmf(X[i,k]|inv_logit(phi_f[age[i],1]+
phi_f[age[i],2]*cov[i])*inv_logit(p_f[age[i]]));
n = n + 1;

}
}

// MALES
for (i in (Is+1):I) {
for (k in 1:last[i]) {
log_lik[n] = bernoulli_logit_lpmf(X[i,k]|inv_logit(phi_m[age[i],1]+
phi_m[age[i],2]*cov[i])*inv_logit(p_m[age[i]]));
n = n + 1;

}
}

}

data {
int<lower=0> N; // number of data items
int<lower=0> K; // number of predictors
matrix[N, K] x; // predictor matrix
vector[N] y; // outcome vector
}

parameters {
real alpha; // intercept
vector[K] beta; // coefficients for predictors
real<lower=0> sigma; // error scale
}

model {
y ~ normal(x * beta + alpha, sigma); // likelihood
}

http://mc-stan.org
Carpenter, et al. 2017. Stan: A probabilistic 
programming language. J Stat Soft 76.
DOI 10.18637/jss.v076.i01

brm(angle ~ recipe * temperature + (1 | recipe:replicate), data = cake)



Extending GLMMs

2 GLMMs
with shared 

“random” effects

Latent variable
modeling

Survival analysis 
with imperfect 

detection



Daphnia as model for 
adaptive maternal effects
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Adaptive maternal effects present, 
though small and accumulative

(a) directed acyclic graph
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Heritability of social behaviour
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Latent

Observed

Latent variable model

Sociality

Environ
ment

Geno
type

Nindividuals = 6,844
Npairs = 295,327
Nyears = 9

Year

Spatial 
overlap

together 

recorded

Permanent
Environment



Genes play a role, 
albeit effect is small



Gender bias in science

:1



Latent

Observed

Survival model with 
imperfect detection

Nresearchers = 23,744
Nyears = 6

Publication 
rate
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Published

Visibility Age
by

gender
Survival

Activet-1



Gap is closing, but increment of 
small differences adds up
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