Inference in ecology and evolution beyond generalised linear mixed models

Reinder Radersma

Dept. of Biology Lund University

reinder.radersma@biol.lu.se

Structure of GLMMs

Stan, a flexible language and powerful inference library

```
brm(angle ~ recipe * temperature + (1 | recipe:replicate), data = cake)
```

```
data {
  int<lower=0> N; // number of data items
  int<lower=0> K; // number of predictors
  matrix[N, K] x; // predictor matrix
  vector[N] y; // outcome vector
  }

parameters {
  real alpha; // intercept
  vector[K] beta; // coefficients for predictors
  real<lower=0> sigma; // error scale
  }

model {
  y ~ normal(x * beta + alpha, sigma); // likelihood
  }
```


http://mc-stan.org

Carpenter, *et al.* 2017. Stan: A probabilistic programming language. *J Stat Soft* 76. DOI 10.18637/jss.v076.i01

```
matrix<lower=-10,upper=10> [max_age,2] phi_m; // visibility women vector<lower=-10,upper=10> [max_age] p_m; // visibility men
 real<lower=0,upper=1>chi[I,K+1]; // probability that an individual is never
// recaptured after its last capture
 // FEMALES
for (i in 1:Is) {
  chi[i,K+1] = 1.0;
       ...u (x > u) {
chi[i,k] = (1 -inv_logit(phi_f[age[i],2]*phi_f[age[i],2]*cov[i])) +
inv_logit(phi_f[age[i],1]*phi_f[age[i],2]*cov[i]) *
(1 - inv_logit(p_f[age[i])) * chi[i,k*1];
k = k - 1;
        chi[i,k] = (1 -inv_logit(phi_m[age[i],1]+phi_m[age[i],2]*cov[i])) +
           inv_logit(phi_m[age[i],1]+phi_m[age[i],2]*cov[i])
(1 - inv_logit(p_m[age[i]])) * chi[i,k+1];
k = k - 1;
           to (k in files[i]) {
target += log_inv_logit(phi_f[age[i],1]*phi_f[age[i],2]*cov[i]);
if (X[i,k] == 1)
target += log_inv_logit(p_f[age[i]]);
          else
target += logIm_inv_logit(p_f[age[i]]);
        target += log(chi[i,last[i]+1]);
target += log1m_inv_logit(p_m[age[i]]);
    target += log(chi[i,last[i]+1]);
 p_f ~ normal(0,1);

phi_m[,1] ~ normal(0,1);

phi_m[,2] ~ normal(0,1);

p_m ~ normal(0,1);
  int n;
vector[N] log_lik;
    / FEMALES
or (i in 1:1st) {
    for (k in 1:last[i]) {
        log_lik(n) = bernoull_logit_lpmf(X[i,k]|inv_logit(phi_f[age[i],1]+ phi_f[age[i],2]*cov[i])*inv_logit(p_f[age[i])));
        n = n + 1;

     ( Lain (1822).) (
for (k in 1:last[i)) {
  log_lik[n] = bernoulli_logit_lpmf(X[i,k]|inv_logit(phi_m[age[i],1]+
  phi_m[age[i],2]*cov[i])*inv_logit(p_m[age[i]));
```

Extending GLMMs

2 GLMMs with shared "random" effects

Latent variable modeling

Survival analysis with imperfect detection

Daphnia as model for adaptive maternal effects

2 GLMMs, shared "random" effects

 $N_{mothers}$ = 233 $N_{offspring}$ = 804 $N_{genotypes}$ = 7

Adaptive maternal effects present, though small and accumulative

Heritability of social behaviour

Latent variable model

Genes play a role, albeit effect is small

year effects

heritability and repeatability

Gender bias in science

:1

26 F

2007

2010

Why Does the Gender Gap Still

Persist?

Fewer girls are entering STEM
—still!—

Retention due to work-life integration & cultural issues: the 'Leaky Pipeline'

The "Network Effect"

Survival model with imperfect detection

Gap is closing, but increment of small differences adds up

Acknowledgements

Lund University
Tobias Uller
Alexander Hegg

U. of New South Wales
Dan Noble

U. of Bern Bernhard Voelkl

U. of Manitoba Colin Garroway

U. of Oxford Ben Sheldon Josh Firth

U. of Bern Bernard Voelkl

Indiana University Cassidy Sugimoto

U. of Manitoba Colin Garroway

Université de Montréal Vincent Larivière

> U. of Oxford Ella Cole

