

The Novo Nordisk Foundation Center for Biosustainability

- DTU Biosustain

Making the most out of a single datapoint using Approximate Bayesian inference. Example from kinetical modeling

Denis Shepelin, PhD student

ecol.ai

DTU Biosustain

The Novo Nordisk Foundation Center for Biosustainability

novo nordisk foundation initiative

Biotechnology

Biotechnology can be used in almost any industry

Cell factories. Enzymes and fluxes

Chemical conversion

Spandex

Chemicals in cell

Biotechnology the modern way

https://doi.org/10.1016/j.ymben.2015.09.013

Data available to biologists

We have tools to define and explore **structure** of metabolic network given organism genome - we know which reactions are there and what

Techniques to measure sets of molecules simultaneously - "-omics" technologies

- 1. *Metabol*omics **abundance of chemicals** (metabolites). Usually ≈ 100s of features per sample.
- 2. *Prote*omics **abundance of proteins (enzymes)**. Usually ≈ 1000s of features per sample.
- 3. Fluxomics estimates of reaction fluxes. Usually ≈ 100s of features per sample.

Data is noisy. Sometimes we are not sure about noise structure (Not Gaussian)

Describing metabolism. Chemical kinetics. Thermodynamics

Thermodynamics (ΔG) - possibility of reaction, kinetics - speed of reaction

Metabolic network structure as transport problem **Linear programming** problem Chemical transformation as kinetical equations **System of ODEs**

Zeroth Order	First Order	Second Order
$Rate = -\frac{\Delta[A]}{\Delta t} = k$	$Rate = -\frac{\Delta[A]}{\Delta t} = k[A]$	$Rate = -\frac{\Delta[A]}{\Delta t} = k[A]^2$
Time	Concentration	Concentration
$[A] = [A]_0 - kt$	$[A] = [A]_0 e^{-kt}$ or	$\frac{1}{[A]} = \frac{1}{[A]_0} + kt$
	$1n[A] = 1n[A]_0 - kt$	

Generalized Monod-Wyman-Changeux model

MWC describes chemical kinetics accounting for **many kinds of events** - is very **complex** and hard to fit

$$rac{d\widetilde{\mathbf{x}}}{dt} = \mathrm{diag}\left(\mathbf{x}^{\mathrm{ref}}
ight)^{-1} \cdot \mathbf{S} \cdot \mathbf{v}\left(\widetilde{\mathbf{E}}; \widetilde{\mathbf{x}}; \mathbf{e}; \mathbf{R}
ight)$$

$$v = \Phi_{cat} * \Psi_{reg}$$

$$v_{i} = \underbrace{E_{i} \cdot nf_{R}(\mathbf{x}_{M}; \mathbf{k}_{R})}_{\text{catalytic}} \cdot \underbrace{\frac{1 + (f_{T}(\mathbf{x}_{M}; \mathbf{k}_{T}) / f_{R}(\mathbf{x}_{M}; \mathbf{k}_{R})) \cdot Q(L; \mathbf{x}_{M}; \mathbf{x}_{E}; \mathbf{k}_{R}; \mathbf{k}_{T}; \mathbf{k}_{E})}_{\text{regulatory}}$$

Generalized Monod-Wyman-Changeux model

MWC describes many kinds of events - is very complex and hard to fit

Most of parameters we can measure!

- x concentrations of metabolites
- **E** abundance of enzyme (it is protein), can be in active (T) or inactive state (R)
- v reaction flux

Other parameters we can sample or want to fit

k's are parameters specific to reaction (to be fitted)

f L describes proportion of active enzyme (can be sampled) - we need (ΔG) here

Q is a function describing how enzymes can be activated and inactivated

ABC reminder

Original problem

$$p(\theta \mid y) \propto p(\theta) p(y \mid \theta).$$

ABC "likelihood"
$$p_{\epsilon}(y \,|\, heta) = \int K_{\epsilon}(y, \hat{y}) \, p(\hat{y} \,|\, heta) \, \mathrm{d}\hat{y}$$

where K is kernel accounting for the distance between simulated sample and true data

ABC-GRASP. Methionine cycle study

Comparatively small system, has very detailed models => good starting point

5 ODEs + 1 algebraic equation, 72 parameters

An Allosteric Mechanism for Switching between Parallel Tracks in Mammalian Sulfur Metabolism, https://doi.org/10.1371/journal.pcbi.1000076

Case study - ABC-GRASP

	Structure	Data	Kinetics	
STIGNI		Fluxomics (v ^{ref} , v ^{exp}) Metabolomics (x ^{ref} , x ^{exp}) Thermodynamics (K ^{eq}) Proteomics (E ^{exp})	ER-MA and MWC $(L, \tilde{\mathbf{k}}_{\mathrm{R}}, \tilde{\mathbf{k}}_{\mathrm{T}}, \tilde{\mathbf{k}}_{\mathrm{E}})$	
COMPLITE	Sample feasible state ($\mathbf{v}^{\text{ref}}, \Delta \mathbf{G}^{\text{ref}}$) Sample uniformly reversibilities (\mathbf{R}^{ref}), enzyme state abundances (\mathbf{e}^{ref}) and allosteric parameters (if necessary) Compute kinetic parameters $\tilde{\mathbf{k}}(\mathbf{R}^{\text{ref}}, \mathbf{e}^{\text{ref}}, \mathbf{v}^{\text{ref}}, \Delta \mathbf{G}^{\text{ref}})$ and assemble reaction rates $\mathbf{v}(L, \tilde{\mathbf{k}}_R, \tilde{\mathbf{k}}_T, \tilde{\mathbf{k}}_E)$ Simulate from the model $\mathbf{v}^{\text{sim}} \leftarrow \mathbf{S} \cdot \mathbf{v}(\mathbf{E}^{\text{exp}}, \mathbf{x}^{\text{exp}}) = 0$, compare against \mathbf{v}^{exp} , and keep if they are close enough			
TURTUO	Sample from ABC-posterior composed of a population of feasible kinetic models for prediction of metabolic states and identification of key regulatory interactions			

Construction of feasible and accurate kinetic models of metabolism: A Bayesian approach, doi:10.1038/srep29635; A General Framework for Thermodynamically Consistent Parameterization and Efficient Sampling of Enzymatic Reactions doi:10.1371/journal.pcbi.1004195

ABC scheme

Smart choice of priors helps with sampling and defines structure. Priors are consistent with rules of thermodynamics

q Prior from GRASP

Build rate law for every enzyme using the MWC model and parameterize as function of normalized metabolite concentration $(\widetilde{\mathbf{X}})$ enzyme abundance (\widetilde{E}) , catalytic $(\widetilde{\mathbf{k}})$ and regulatory $(L, \mathbf{K}^{\text{eff}})$ parameters

$$\boldsymbol{\nu} = \boldsymbol{\Phi}_{\text{catalytic}}(\widetilde{\boldsymbol{E}}, \widetilde{\boldsymbol{k}}, \boldsymbol{X}) \bullet \boldsymbol{\Psi}_{\text{regulatory}}(\boldsymbol{L}, \boldsymbol{K}^{\text{eff}}, \widetilde{\boldsymbol{X}})$$

Sample (k̄,L,Keff)
constrained to
thermodynamic realizability

Assemble probability distribution of kinetic parameters $\theta \leftarrow (\tilde{\mathbf{k}}, L, \mathbf{K}^{\text{eff}})$ into feasible prior $\pi(\theta)$

ABC scheme

Parameters from the prior satisfy basic rules of chemistry => We save time not trying to do unrealistic simulations

Rejection Sampler -> Sequential Monte Carlo (experimental)

Training the model

Simulate data via published and verified model yielding 12 "samples". Change values of concentrations, enzyme abundancy or flux

Results. Properties and Predictions

Training is fast, after two points very little changes

Results. Properties and Predictions

Even prior contains very valuable information. Some analyses can be performed without any data. Note that after 2 points posterior changes very slightly.

Results. Properties and Predictions

Inexact parameter fit provides accurate predictions. We are interested in predictions!

DTU Biosustain, Technical University of Denmark

Identification of omitted rules

Some interaction between compounds and reactions are removed (grey dotted arrows).

Identification of omitted rules

Add interactions one-by-one to corrupted model. Use Bayes Factor to decide what is possible deleted interaction

Challenges

- 1. Computational load
- 2. MATLAB as environment
- 3. Diversity of samples hard to control
- 4. How to share and communicate resulting model
- 5. How to scale solution to higher dimensions
- 6. Complicated prior (involves several linear programming routines)

Moving forward

Hamiltonian MC with information about gradients? (Graham & Storkey, 2017)

Switch from Monte-Carlo to Variational Bayes methods? (Moreno, 2016)

Probabilistic programming libraries as foundation for next-gen tools? (TensorFlow probability, Pyro, ...)

We are very happy to hear your suggestions!

Conclusions

- 1. We can use prior knowledge of problem structure.
- 2. We can use complex models within ABC framework.
- 3. Prediction accuracy vs parameter estimation accuracy.
- 4. Not all data points are equal.
- 5. It's still tricky to set up and perform ABC the right way. But! there is lots of progress in the field.

ABC packages

ELFI (implements BOLFI) (Python)

pyABC from Helmholtz Centrum (Python)

ABCpy (Python)

al3c (C++)

PEITH(Θ) + abc-sysbio (Python)

abctools (R lang)

DiffEqBayes.jl (Julia)