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Cell factories. Enzymes and fluxes
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Chemicals in cell

DTU Biosustain, Technical University of Denmark
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Biotechnology the modern way

e

(Un)surprisingly
hard!

DESIGN

.....

Design Space:
Pathway discovery/optmization + Gerome-scale recosstiuction
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Qata analysis with active machine leaming alurx»"hmj \ Genome-scale modification libraries
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High-throughput data collection and genot ypmg

TEST

https://doi.org/10.1016/j.ymben.2015.09.013

DTU Biosustain, Technical University of Denmark
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Data available to biologists

i

We have tools to define and explore structure of metabolic network
given organism genome - we know which reactions are there and what

Techniques to measure sets of molecules simultaneously - “~-omics”
technologies

1. Metabolomics - abundance of chemicals (metabolites). Usually = 100s of
features per sample.

2. Proteomics - abundance of proteins (enzymes). Usually = 1000s of features
per sample.

3. Fluxomics - estimates of reaction fluxes. Usually = 100s of features per
sample.

Data is noisy. Sometimes we are not sure about noise structure (Not Gaussian)



Describing metabolism. Chemical kinetics. Thermodynamics

i

Thermodynamics (AG)- possibility of reaction, kinetics - speed of reaction

Metabolic network structure as transport problem
Linear programming problem

Chemical transformation as kinetical equations
System of ODEs

A Conversion to a mathematical representation
* R1 S=
o ﬁ A 1 =
i s B -1 [-1
R3 R4 = D 1 |
(c) Ri R2 Rs Rs Rs Re
Rs Re Reactions
B Imposed C Optimal solutions
constraints
Constraints: Objective: Objective:
1) Sev =0 Maximize Vs Maximize Ve
2)ai<vi<bi
Optimal
Ve Ve solution Ve <«—Optimal
solution
Allowable
solution
space
\75 55 :Vs

Using Genome-scale Models to Predict Biological Capabilities; https://doi.org/10.1016/j.cell.2015.05.019

Zeroth Order First Order Second Order
Rate =— AIAl _ g Rate =—— AIAl _ kia] Rate =— AL _ k(a2
At At At
S S S
Time Time Time
[A] = [Alge ™ 1.1 .
[A] =[A]y- kt or Al ~ AL

1n[A] = 1n[A], - kt

https://derekcarrsavvy-chemist.blogspot.dk/2016/02/reaction-kinetics-5-kinetics-and.html
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Generalized Monod-Wyman-Changeux model

MWC describes chemical kinetics accounting for
many kinds of events - is very complex and hard to

fit

B — diog (x*) -8 v (Bi%; e R)

V= Pyt * \Ijreg

b= Eonf, (o g - oI O ) g (o ) )-Q (£3 Xi; X3 K Kers Ke)
l R 1 + Q(L;xnm; Xg; Kr; kr; ki)

catalytic

regulatory

Formulation, construction and analysis of kinetic models of metabolism: A review of modelling frameworks 10.1016/j.biotechadv.2017.09.005



Generalized Monod-Wyman-Changeux model

i

MWC describes many kinds of events - is very complex and hard to fit

Most of parameters we can measure!

X - concentrations of metabolites
E - abundance of enzyme (it is protein), can be in active (T) or inactive state (R)
v - reaction flux

Other parameters we can sample or want to fit

k’s are parameters specific to reaction (to be fitted)
L describes proportion of active enzyme (can be sampled) - we need (AG) here
Q is a function describing how enzymes can be activated and inactivated

Formulation, construction and analysis of kinetic models of metabolism: A review of modelling frameworks 10.1016/j.biotechadv.2017.09.005



ABC reminder

original problem P (8 | y) o< p(0) p(y | 6).

f —> Simulator —

ABC “likelihood” Pe (y ‘ 0) — /Ke (y, f&) p(g ' 9) dg

where K is kernel accounting for the distance between simulated
sample and true data

https://casmis.github.io/general/2016/10/02/abc.html
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ABC-GRASP. Methionine cycle study

Methionine
A External medium
- - - ~ Comparatively small
ranspo
PRl AT want x> s iEpatocyie system, has very
Proteins [ Methionine [ ___ > AdoMet detailed models =>
A4 MATII 4 good starting point
NADPH /| Folate Pool Dimethylglycine v L
\ Yy /’Glycine /
/) g
MTHFRy_ MS \BHMT 5 /G,N'\D @hy'ases 5 ODEs + 1 algebraic
RN Betaine’///://Sarcosine e A CHa equation,
~N ] e - - ] H
NADR w7 | T T - 72 parameters
- \ 2 /
L +"  AHC
cy |€&—%~ »| AdoHcy
Ve
- L
Serine CB‘é Adenosine
\ 4
Cystathionine ——» —»| GSH
" y

An Allosteric Mechanism for Switching between Parallel Tracks in Mammalian Sulfur Metabolism, https://doi.org/10.1371/journal.pcbi.1000076

i



Case study - ABC-GRASP

INPUTS

LLI
=
=)
[l
=
@)
@)

OUTPUT

Structure Data Kinetics
Network structure (S) Fluxomics (v'f,vex®) ER-MA
Thermodynamic Metabolomics (x'f,xe*?) and
constraints (v.2 0 ) Thermodynamics (K*9) MWC _
Prot. structural info. Proteomics (E=*) (LK K Kp)

Sample feasible state (v*',AG™)

Sample uniformly reversibilities (R™), enzyme state
abundances (e™") and allosteric parameters (if necessary)

Compute kinetic parameters k(R™',e™ v¢, AG™") and assemble
reaction rates v(L,k . .k, k)

Simulate from the model vs™ « S-v(,E®** x®*) = 0, compare
against v®® and keep if they are close enough

Sample from ABC-posterior composed of a population
of feasible kinetic models for prediction of metabolic states
and identification of key regulatory interactions
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Construction of feasible and accurate kinetic models of metabolism: A Bayesian approach, doi:10.1038/srep29635; A General L Framewor| k for Thermodynamically Consistent Parame terization and Efficient Sampling
of Enzymatic Reactions doi:10.1371/journal.pcbi.1004195



Prior from GRASP

ABC scheme
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Smart choice of priors helps with sampling and defines structure.
Priors are consistent with rules of thermodynamics

\

( Build rate law for every enzyme using the MWC \

model and parameterize as function of
normalized metabolite concentration (X)
enzyme abundance (E), catalytic (k) and
regulatory (L,K**) parameters

V. (pcalal'ytic(g'ﬁ’x) % \Pregulatoq(L’Ke"'i)

Sample (E,L,K“’)
constrained to
thermodynamic realizability

J

>

Assemble probability distribution
_ of kinetic parameters
0 « (k,L,K*") into feasible prior n(0)
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ABC scheme —
—
Parameters from the prior satisfy basic rules of chemistry =>
We save time not trying to do unrealistic simulations
c , d Parameter )
o a Sample candidate —{
c 2 £ —»| parameter set from » il i
28 T feasible prior 6" ~ n(0) S
*g % E Metabolic perturbation § Control structure |
Q » ke data (v** E®%®) © prediction
E o c = v
8 -% 2| |Simulate flux distribution v* 2
5 .0 o S« v(0*,E™* X*) =0 % Posterior prediction )
D & S of metabolic states |
D, > <
(@] O o * . . <
a m Accept 6* and build posterior 1
<L 'E_f No @ L distribution sample from N { Mode: SYuciure
accepted sets nt(0|ve, E®?) selection y

A

Y

Rejection Sampler -> Sequential Monte Carlo (experimental)



Training the model

Simulate data via published and verified model yielding 12 “samples”.
Change values of concentrations, enzyme abundancy or flux

Training perturbations

N

e
T

e

Flux log-fold change relative to v ©
o
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DTU Biosustain, Technical University of Denmark
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(1) 50% up-regulation CBS
(2) 50% increase in v
(3) BHMT knockout
(4) 80% down-regulation MTFHR
(5) 2-fold up-regulation MS

(6) 2-fold up-regulation AHC

(7) 50% up-regulation v, .

(8) 50% down-regulation MATI
(9) 2-fold up-regulation GNMT
(10) 2-fold up-regulation MATIII
(11) 30% down-regulation METH
(12) 30% down-regulation CBS

INFLUX
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Results. Properties and Predictions

Training is fast, after two points very little changes

a
24D
= distance from the prior
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a 1
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Results. Properties and Predictions

i

Even prior contains very valuable information. Some analyses can be
performed without any data. Note that after 2 points posterior changes very
slightly.

Revealing the control structure of the network b Quantitative prediction of control coefficients
Prior Posterior prediction (dataset #2)
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Results. Properties and Predictions

Inexact parameter fit provides accurate predictions.

We are interested in predictions!

8l @k (Vono) @ Kis Vien)
. KII« (Vmoy) v '_(wccy (vuLm)
@k ) W Ko (V)
6 d . Ru“ (VMAH) v k Wl)
@ k MATI) v K (VBNMY)
@ Ew- (vuuu) A 4 K wet (Verur)
o4t
: -
a |
>
=
52|
e} =
© p—
g |
L 0F 2
o -
(] 3
a "
2} L
1 R2=0.95
4} o (2 slope =1.03
-5 -2.5 0 25

True model log(6) value

@ Simulated responses

=
—
n]

i

@ Predicted responses

I TS 3 3
IRLNENEEED
' & T .;4
I WL
l@ o e
s * "
0.5
& <
Ol v W, 8
J& 2 a

0.5




Identification of omitted rules

Some interaction between compounds and reactions are removed (grey
dotted arrows).

Incomplete model (2 missing interactions)
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Identification of omitted rules

s

Add interactions one-by-one to corrupted model. Use Bayes Factor
to decide what is possible deleted interaction

i AdoMet --
(Bfactor,MATlll

vV INFLUX

VMATI

== Vaatui BF >3.0

> 3.0, p-value < 10°) «—

/ \
-~

No interz

MATHI

-
_‘_a
-

-
_-“

t f\'d;oMet

factors

Interaction recovered



Challenges

Computational load

2. MATLAB as environment

3. Diversity of samples - hard to control

4. How to share and communicate resulting model
5. How to scale solution to higher dimensions

Complicated prior (involves several linear programming routines)

i



Moving forward

Hamiltonian MC with information about gradients? (Graham & Storkey,
2017)

Switch from Monte-Carlo to Variational Bayes methods? (Moreno, 2016)

Probabilistic programming libraries as foundation for next-gen tools?
(TensorFlow probability, Pyro, ...)

We are very happy to hear your suggestions!
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https://projecteuclid.org/euclid.ejs/1513306869
https://arxiv.org/abs/1606.08549

Conclusions

1. We can use prior knowledge of problem structure.
2. We can use complex models within ABC framework.
3. Prediction accuracy vs parameter estimation accuracy.

4. Not all data points are equal.

5. It’s still tricky to set up and perform ABC the right way. But! there is
lots of progress in the field.
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ABC packages

ELFI (implements BOLFI) (Python)

pyABC from Helmholtz Centrum (Python)

ABCpy (Python)

al3c (C++)

PEITH(®) + abc-sysbio (Python)

abctools (R lang)

DiffEgBaves.jl (Julia)

DTU Biosustain, Technical University of Denmark
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https://github.com/elfi-dev/elfi
https://github.com/icb-dcm/pyabc
https://github.com/eth-cscs/abcpy
https://github.com/ahstram/al3c
https://github.com/MichaelPHStumpf/Peitho
https://github.com/jamesscottbrown/abc-sysbio
https://github.com/dennisprangle/abctools
https://github.com/JuliaDiffEq/DiffEqBayes.jl

