

Introducing Bayes

Rasmus Bååth, rasmus.baath@gmail.com King Digital Entertainment

Some ways to introduce Bayes

- The base rate fallacy.
 - "You test positive, what's the probability you have this horrible rare disease?"
 - Not statistics, no estimation. It's only about Bayes rule.
- Mathematical with conjugate priors.
 - "The data is Normally distributed with known standard deviation."
 - When was ever the standard deviation known!? Fine if you like math, I guess.
- Personal belief and hypothesis testing.
 - Gets philosophical too fast! Why is the prior personal, but not the model? Does this model really update my personal prior, why can't I just do it myself by just looking at the data? How do I know what my prior is?!

Introducing Bayes as conditioning with probability distributions represented by samples

Not the greatest name perhaps...

We want to know

- How many visitors / clicks will we get out of a 100 shown adds.
- Will we get more than 5 clicks / visitors?

A function simulating people clicking on 100 ads with an underlying rate of 10%


```
n_visitors <- rbinom(</pre>
    n = 100000,
    size = 100,
                                     Frequency
    prob = 0.1)
hist(n_visitors)
mean(n_visitors > 5)
[1] 0.94
```


Done so far

- Represented uncertainty over future data with probability
- → Worked with samples

```
n_visitors <- rbinom(</pre>
    n = 100000,
    size = 100,
                                     Frequency
    prob = 0.1)
hist(n_visitors)
mean(n_visitors > 5)
[1] 0.94
```


5000 proportion_clicks <- runif(</pre> Frequency n = 100000, min = 0.0, max = 0.2) 2000 n_visitors <- rbinom(</pre> 0.00 0.05 0.10 0.15 0.20 n = 100000, size = 100, Underlying proportion of clicks prob = 0.1)12000 8000 Frequency 4000 0 5 10 15 20 25

Done so far

- → Represented uncertainty over future data with probability
- → Worked with samples
- Represented prior uncertainty over parameters with probability
- Produced a prior predictive distribution over future data

"Now we just condition on this data!"


```
prior <- data.frame(</pre>
    proportion_clicks, n_visitors)
head(prior)
  proportion_clicks n_visitors
                0.20
                            20
                0.07
                            6
                0.07
                0.06
                0.01
                0.05
```



```
500
prior <- data.frame(</pre>
                                                      Frequency
     proportion_clicks, n_visitors)
                                                          200
                                                          0
posterior <-</pre>
                                                              0.00
                                                                   0.05
                                                                        0.10
                                                                             0.15
                                                                                  0.20
     prior[prior$n_visitors == 13, ]
                                                                 Underlying proportion of clicks
hist(posterior$proportion_clicks)
                                                          10000
                                                      Frequency
n_visitors <- rbinom(</pre>
                                                          5000
     n = 100000,
     size = 100,
     prob = posterior$proportion_clicks)
                                                          0
mean(n_visitors > 5)
                                                                   5
                                                                        10
                                                                             15
                                                                                      25
                                                                    Number of visitors
```

Done so far

- → Represented uncertainty over future data with probability
- → Worked with samples
- Represented prior uncertainty over parameters with probability
- → Produced a prior predictive distribution over future data
- Bayesian inference by conditioning on the data
- Produced a posterior predictive distribution

What's bad

- No explicit mention of probability
- You never see Bayes rule
- The computational method doesn't scale to other models
- Of course, a one semester course would be better

What's good

- Applied example
- Focus on getting a grip on uncertainty
- Everything is there: Priors, posteriors, samples, prediction, data, Bayesian updating!
- You build it up from scratch
- It's crappy model, but it's slightly less crap in the end.

"Statistical modeling is not about building the perfect true model. It's about building a less crappy one."

Introducing Bayes

Rasmus Bååth, rasmus.baath@gmail.com King Digital Entertainment

```
0.12
visitor_prob <- dbinom(</pre>
     x = 0:100,
     size = 100,
                                               0.08
                                         Probability
     prob = 0.1)
                                              0.04
plot(0:100, visitor_prob)
                                               0.00
                                                            5
                                                                   10
                                                                           15
                                                                                  20
                                                                                         25
                                                     0
```