| know what you ate last summer!

e ... with some uncertainty, of course...

» Practical use of Bayesian statistics for simple problems. Example.
» Bayes for evidence synthesis.
» Bayes for source attribution.
» Bayes for acute food consumption risk and prediction.



Bayes for risk assessment in food safety

* Food safety depends on lots of things from farm-to-fork

* Not enough to '’know what you typically eat’, but also:
* how much/often you eat,
* how you made/kept it,
* where did you buy it,
* and how it was produced !

* Some data from these steps.
e Bayesian methods exploited to quantify probabilities.
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Practical usefullness:
doing simple statistics

Often small sample analyses are done using
various statistical tests.

Worries:
=  What test to use?
= |sthe sample size large enough?

= |sthe number of blocks/groups large
enough?

= [Interpretation of results: reject H, or not,

and what to say then?
=  Multiple testing problems...

=  Testing just because of the habit?

* Biofilm production by 10 strains of
S.Enteritidis on cutting boards

el e s s eont

Wood 4
Plastic 6 4 0 0
Glass 9 1 0 0

 What are we really asking?
* Which material is safest?
 How does it translate to a statistical question?

* Q1: do the materials differ?
* Q2: which material has the highest P(None)?

[Foodborne pathogens and disease 15, (2), 2018. 81-85.]



Bayesian formulation
of the problem

Model: Multinomial probabilities
P1,P2,P3,P4 =
P(None), P(Weak), P(Moderate), P(Strong)

Compute P( py,p,, P3P, | data) for each
material

= Typical prior: Dirichlet(1/4,...,1/4)
=  —>Posterior: Dirichlet(x,+1/4,...,x,+1/4)

= All conclusions produced from this!

= For example:
=  P( P(None) is highest on Glass )
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Take home recipe: simple-to-run code for OpenBUGS/WinBUGS

model{

for(i in 1:materials){

pnoneli] <- p[i,1]

pli,1:k] ~ ddirch(a[i,1:k])

for(j in 1:k){a[i,j] <- x[i,j]+1/k}

}

largest.value <- ranked(pnone[],materials)

for(i in 1:materials){ whichli] <- equals(pnoneli],largest.value)*i }
pnonelargest <- sum(which[])

}

# data:

list(materials=3,k=4,

x=structure(.Data=c( Simple Bayesian models for simple problems can also be useful,
4,3,1,0, and not too hard to implement.

6,4,0,0,

9,1,0,0),.Dim=c(3,4)))






Simple evidence synthesis: N(u,52)

Reported log-concentrations:

data often modeled with parametric distributions,
e.g. normal.

DATA 1: measurements

DATAL: this goes in easily!




Simple evidence synthesis: N(u,52)

Some data could be reported
only as averages

Include also DATA2

DATA 1: measurements

N(w,6%/10)

DATA 2: averages of 10 measurements



Simple evidence synthesis: N(u,52)

Or reported differences

N(M,Gz) N(O,ZGZ) DATA3 goes in too!

DATA 3: differences of two measurements
DATA 1: measurements

N(w,6%/10)

DATA 2: averages of 10 measurements



Simple evidence synthesis: N(u,52)

N(u,02) N(0,2c2)

DATA 1: meas

d(c,u,02)

DATA 3: differences of two measurements

ents

N(w,6%/10)

Reported

values below c DATA -

DATA4

DATA 4: censored measurements

m

DATA 2: averages of 10 measurements



f there is a model, there’s a way ‘

Maximum likelihood estimation Bayesian inference

e Construct full likelihood of all * Construct full likelihood of all
datasets. datasets.

* Maximise to get ML-estimates * Define prior distributions.

* Higher dimensions can become * Simulate the posterior
difficult. distribution using MCMC

(BUGS,JAGS,STAN,own sampler).

* Aiming to get the uncertainty
distribution of all parameters.

* Multiple maxima?

* Aiming to get the single
estimate.



Is there Campylobacter in the broiler you get?

* Your broilers are 'sampled’ from production batches.
* There is variability between batches and within batches.

Data on sampled batches

Slaughter
batch

carcass

Sampled °

1. Bayesian evidence synthesis

New batch:
predicted
log4o cfu/g
on carcass
skin.

Home kitchen

Predicted
log4, cfu/g
in chicken
meal.

>@
Predicted
log,, cfu/g
on chicken
meat.

e ®
o

2. Predictive QMRA model

[9 consumers’ risk ]




Do we have enough evidence for an estimate?

* There were two (Swedish) data sets:

* A: representing only one broiler from each batch, 10 slaughterhouses, 705

batches, sampled in a representative way. Result: positive/negative, &
concentration if positive.

- 88 pos, 617 neg, hence 88 conc. values.

* B: representing the mean and SD of log-concentrations, from 5 to 25 positive

broilers per batch, from 20 positive batches, and the # posit/negat broilers in
each batch.



S
Complementing evidence from both

* A: information about mean and total variance of concentrations in
positive broilers, but nothing about within-batch prevalence*, or
variance components.

(*) if we assume within-batch prevalence 100%, can estimate batch prevalence.

* B: information on within-batch parameters for positive batches, but
nothing on overall batch prevalence.

* Make a synthesis of A & B with a Bayesian model.



Just like in the example before:
models connected with common parameters
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Posterior distributions for the two variance components

Lindblad et al. data

0.70 0.75 0.80 0.85

0.865

Combined data

0.75 0.80 0.85

0.70

Hansson et al. data

Fic 3. Marginal posterior distributions of (op, 0. ) based on each data set alone (1/batch

left, N /batch™ right) and the two data sets combined (middle).



Estimation from a synthesis is , but
there’s more than that...

* A Microbiological Criterion (MC) can be placed for the
acceptance of a batch.

* This would be based on sampling results, batch by batch.
* When bad batches are rejected, consumers’ risk is reduced.
* But producers’ costs are increased if too many batches are

rejected! - \
consumers’ risk

\_ J

4 w p
producers’ risk

\, J




What does the outcome from such test
sample represent? - Additional evidence.

e Can use Bayesian model to revise the estimates for PREDICTED
ACCEPTED batches.

* This determines the new consumer risk, under such criterion.

* Can also calculate the probability of rejection for batches = predicted
percentage of lost batches.

* A criterion could be: “n/c/m” = "at most c samples out of n are
allowed to have concentration >m”.

e HOW TO CHOOSE n/c/m ?
* Uncertainty analysis involves 2D Monte Carlo (MC within MCMC).



RR

1.0

0.8

0.6

0.4

0.2

0.0

Finding an optimal criterion, accounting for uncertainties.
RR =risk ratio = risk when MC is met / risk if no MC was applied.
P(MC not met) = percentage of rejected batches.

2

RR

0.4

0.2

0.0

P(MC not met) P(MC not met)






Classification problems: ‘source attribution’

o
»
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e Bacteria types sampled from a few broad food categories,
denoted as 'the sources’. 10 5 s
20 ’, 15’ 5\15
© “vd
* E.g. broilers (samples from meat and/or animals),
* Likewise turkey, cattle, pigs, etc.
e Possibly also other exposures: swimming waters, environment,...

* Bacteria types from human isolates taken as a mixture sample of sources.

* Problem: assuming human isolates (somehow) originated from those
sources,
 classify each isolate into sources.

* estimate what fraction of cases are generally from which source (mixture
proportions).



Proportion of types 1,...,J in source 1
P (@) of typ Number of types 1,...,]

dmong human cases.

‘ Y., ..., Y,

Xll, see XlJ

Number of types 1,...,J in sample.

Proportion (q,) of types 1,...,J in source 2

X1y e s X,

Number of types 1,...,J in sample.




Bayesian classification methods

* Naive Bayes classifier with sources i =1,..,1, and types j=1,...,]
* P(sourcei | typej) = P(typej | source i) P(source i) / const

* P(source i) = 1/l, prior probability, i=1,...,I sources.

* P(type j| source i) = Multinomial( g,*,1) with estimated type frequencies g,*
directly from data: q;* = x; / n; or smoothed: (x; +1/J)/ (n+1).

* If P(source i) = p, with prior P(p,), we obtain posterior distribution:
P(l,....,l\yP1--0; | %y ) for the population fractions p (mixture proportions),
and source labels | for each human case, based on source samples x and
human samplesy.



Bayesian classification methods

 Posterior predictive classifier
* For asingle new isolate in a source i, predictive probability: P(type j |x; ) = P;

F(Zaij) I'l+a;)
P —
! F(1+Zaij) I'(er;)
IMUItin(qil""’qu DDIr(Qyg,---, Gy [ iy 35 ) DY

from the integral (predictive distribution) :

* o, are parameters of the posterior distribution of the type frequencies q in
that source.

* These predictive probabilities can be used to evaluate

ceey



More advanced methods qé

* Extensions: clustering into unknown num@r of groups vith tra/nmg :
data for some groups, or without training data (unsupervised®’ 52259
classification), marginal or simultaneous c%@ss:ﬁcat: , genetic .
population structure, evolutionary trees, e?fe CARES

T
7
EQE%%%

%41

%925??4 145 31591 ﬁ@

* Here we simply restrict to a fixed defined number of groups described as “the
food product types”, each simply represented with some surveillance
samples, with a set of possible types.



Population frequency

Simulation experiment with 200 types, 5 sources.

If many types are frequent in a source If only a few types are frequent in a source
Dirichlet(1,...,1) Dirichlet(1/200,...,1/200)
S 5
g <
5 -
o) - D%j- N
o . ® .:". ..
5 % .h. . * u -;‘: . ® -
S - Yot e - - O |
© | | | | | ° | | | | |
0 50 100 150 200 0 50 100 150 200

Type Type



If many types are evenly frequent in each source

5 sources 5*N samples, N human cases

N=500 N=200

Estimated
Estimated

True population attribution True population attribution



Easy if only a few types dominate in each source

N=200

1.0

0.8

0.6

Estimated
0.4

0.2

0.0

| I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

True population attribution






Basics of intake assessment

* Acute exposure to a microbe or chemical: > C, * W,

* C, = concentration of the hazardous substance per gram, in food type k.

W, = consumption amount (in grams) of food type k per serving.

C and W independent = a model for both occurrence data and consumption data.

Variability of C between samples, between food types.
Variability of W between days (for an individual), between individuals.



Listeria risk for a whole week and beyond!

* Acute risk of illness for e.g. Listeria from ready-to-eat food: the probability
per serving (or per day) to getiill.

Depends on:

The probability to consume that food (consumption frequency).
The probability of Listeria in it (prevalence of Listeria).

The probability distribution of consumption amount.

The probability distribution of Listeria concentration.
Dose-response probability.

* And the growth of bacteria during storage if you eat it later (again).
* And how likely you would continue eating the following days.



Again, start with evidence synthesis for all
parameters

@P

concentration data

# positives
# negatives

Listeriosis

cases reported

B

48h recall data on
consumption

serving
size data




If you consume bad food on a bad day

P(ill | contaminated & consumed, on day)

 Posterior daily probability of -
illness, if you DO eat food that '
was bought contaminated on
day 1.

0.00015
1

0.00010
1

* Growth makes it increasingly
risky.
* But only if you eat it, and if you

are still susceptible (i.e. not yet
infected).

0.00005
I

0.00000
I




But you can stop eating it any day!

P{ill | contaminated, bought day 1)

* Next: take into account the daily -
probability to continue 5
consumption, and the survival
probability to avoid infection
(probability to be still
susceptible for the first
infection)
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What is the cumulating effect?

* Cumulative probability of illness
can reach a limit < pq < 1.

* A race of two opposite effects:

* Bacteria growth versus quit eating
a contaminated product.

- And the winner is?

Cumulative pqP(ill | contaminated, bought day 1)

2e-08 de-08 Ge—-08 8e-08
l l

—_
1




In this study we had both exact
concentrations (CFU/g) and values below LOQ

e Posterior distribution is based on full
likelihood function.

* L(n,o) =TT Ply; | po?) x TT Ply,;<c | pn,0?)

50 data points ~ N(mu=1,sig=2). 50 of them > -3

* Example: likelihood function
contours if no values below LOQ: =2

(same as posterior distribution ;
contours it uniform prior)

 What if most, or all, measurements are
below LOQ?

* j.e. left censored: y<c=L0Q




50 data points ~ N(mu=1,sig=2). 50 of them > -3

50 data points ~ N(mu=1,sig=2). 35 of them > 0 90 data points ~ N(mu=1,sig=2). 7 of them > 3

\

4.0

|

o =]
3 2 1 0 1 2 3 3 2 1 0 1 5 3 -3 2 1 0 1 2 3
n " n
50 data points ~ N(mu=1,sig=2). 1 of them > 6 50 data points ~ N(mu=1,sig=2). 0 of them > 7 This is what happens to parameter

uncertainty when increasingly more
data points fall below the censoring limit.

In applications, often very large proportion
of concentration measurements are below LOQ.




DATA: CFU-values or original plate counts?

* CFU/g -value itself is an estimate from laboratory.
e Original data: plate counts from dilution series.

 Either way: Bayesian model accounting for true zeros and small
concentrations that may lead to apparent zeros. (zero-inflated models).

* NOTE: we can only use the data we have.
—>The model should reflect this.



So what then?

* Bayesian methods have already been long used in many applications
for food safety risk assessment, both chemical and microbiological.

* Not always called or known to be “Bayesian”.

* E.g. simulating outcomes X from model P(X[ 6) with a range of parameter
values @ (randomly from uniform distribution P(6)), then selecting those
parameters that led to a desired outcome X=x.

= this is the simplest Monte Carlo method for a posterior distribution P(6]X=x),
and the simplest ABC-method (without the "A”).

 Potential still not fully exploited.
* Increase probabilistic problems in basic training?
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Thank you !
Tack !
Kiitos !




