
I know what you ate last summer!

• … with some uncertainty, of course…                               …or not.

• Outline:

Practical use of Bayesian statistics for simple problems. Example.

Bayes for evidence synthesis.

Bayes for source attribution.

Bayes for acute food consumption risk and prediction.



Bayes for risk assessment in food safety

• Food safety depends on lots of things from farm-to-fork

• Not enough to ’know what you typically eat’, but also: 
• how much/often you eat, 
• how you made/kept it, 
• where did you buy it,
• and how it was produced !

• Some data from these steps. 
• Bayesian methods exploited to quantify probabilities.
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Practical usefullness:
doing simple statistics

• Biofilm production by 10 strains of 
S.Enteritidis on cutting boards

• What are we really asking?
• Which material is safest? 

• How does it translate to a statistical question? 
• Q1: do the materials differ?

• Q2: which material has the highest P(None)?

Often small sample analyses are done using
various statistical tests. 

Worries: 

 What test to use?

 Is the sample size large enough?

 Is the number of blocks/groups large
enough?

 Interpretation of results: reject H0 or not, 
and what to say then?

 Multiple testing problems…

 Testing just because of the habit?  

Material None Weak Moderate Strong

Wood 4 5 1 0

Plastic 6 4 0 0

Glass 9 1 0 0

[Foodborne pathogens and disease 15, (2), 2018. 81-85.]



Bayesian formulation
of the problem
Model:  Multinomial probabilities

p1,p2,p3,p4 = 

P(None), P(Weak), P(Moderate), P(Strong)

Compute P( p1,p2,p3,p4 | data) for each
material

 Typical prior: Dirichlet(1/4,…,1/4)

 Posterior: Dirichlet(x1+1/4,…,x4+1/4)

 All conclusions produced from this!

 For example:

 P(  P(None) is highest on Glass )  
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Take home recipe:    simple-to-run code for OpenBUGS/WinBUGS

model{
for(i in 1:materials){
pnone[i] <- p[i,1]
p[i,1:k] ~ ddirch(a[i,1:k])
for(j in 1:k){a[i,j] <- x[i,j]+1/k}

}
largest.value <- ranked(pnone[],materials)
for(i in 1:materials){ which[i] <- equals(pnone[i],largest.value)*i }
pnonelargest <- sum(which[])
}
# data:
list(materials=3,k=4,
x=structure(.Data=c(
4,5,1,0,
6,4,0,0,
9,1,0,0),.Dim=c(3,4)))

Simple Bayesian models for simple problems can also be useful, 
and not too hard to implement. 





DATA 1

DATA 1:  measurements

Simple evidence synthesis: N(m,s2) 

m,s2N(m,s2)

Reported log-concentrations:

data often modeled with parametric distributions, 
e.g. normal. 

DATA1: this goes in easily!



DATA 2

DATA 2:  averages of 10 measurements

m,s2

Some data could be reported
only as averages

Include also DATA2

DATA 1

DATA 1:  measurements

N(m,s2)

N(m,s2/10)

Simple evidence synthesis: N(m,s2) 



DATA 2

DATA 2:  averages of 10 measurements

DATA 3:  differences of two measurements

DATA 3

m,s2 N(0,2s2)

Or reported differences

DATA3 goes in too!

DATA 1

DATA 1:  measurements

N(m,s2)

N(m,s2/10)

Simple evidence synthesis: N(m,s2) 



DATA 2

DATA 2:  averages of 10 measurements

DATA 3:  differences of two measurements

DATA 3

m,s2

N(m,s2/10)

N(0,2s2)

DATA 1

N(m,s2)

DATA 4

DATA 4:  censored measurements

F(c,m,s2)

Reported
values below c
DATA4

DATA 1:  measurements

Simple evidence synthesis: N(m,s2) 



If there is a model, there’s a way

Maximum likelihood estimation

• Construct full likelihood of all
datasets.

• Maximise to get ML-estimates

• Higher dimensions can become
difficult.

• Multiple maxima?

• Aiming to get the single 
estimate.

Bayesian inference

• Construct full likelihood of all
datasets.

• Define prior distributions.

• Simulate the posterior
distribution using MCMC 
(BUGS,JAGS,STAN,own sampler).

• Aiming to get the uncertainty
distribution of all parameters.



Is there Campylobacter in the broiler you get?

• Your broilers are ’sampled’ from production batches.

• There is variability between batches and within batches. 

 consumers’ risk



Do we have enough evidence for an estimate? 

• There were two (Swedish) data sets: 

• A: representing only one broiler from each batch, 10 slaughterhouses, 705 
batches, sampled in a representative way. Result: positive/negative, & 
concentration if positive.

 88 pos, 617 neg, hence 88 conc. values.

• B: representing the mean and SD of log-concentrations, from 5 to 25 positive
broilers per batch, from 20 positive batches, and the # posit/negat broilers in 
each batch.  



Complementing evidence from both

• A: information about mean and total variance of concentrations in 
positive broilers, but nothing about within-batch prevalence*, or
variance components.

(*) if we assume within-batch prevalence 100%, can estimate batch prevalence. 

• B: information on within-batch parameters for positive batches, but
nothing on overall batch prevalence.

• Make a synthesis of A & B with a Bayesian model.   
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Just like in the example before:
models connected with common parameters



Posterior distributions for the two variance components



Estimation from a synthesis is interesting, but
there’s more than that… 
• A Microbiological Criterion (MC) can be placed for the 

acceptance of a batch.

• This would be based on sampling results, batch by batch.

• When bad batches are rejected, consumers’ risk is reduced.

• But producers’ costs are increased if too many batches are
rejected!

consumers’ risk

producers’ risk

VS



What does the outcome from such test
sample represent?  - Additional evidence.  
• Can use Bayesian model to revise the estimates for PREDICTED  

ACCEPTED batches.

• This determines the new consumer risk, under such criterion. 

• Can also calculate the probability of rejection for batches  predicted
percentage of lost batches.

• A criterion could be: ”n/c/m” = ”at most c samples out of n are
allowed to have concentration >m”. 

• HOW TO CHOOSE n/c/m ?

• Uncertainty analysis involves 2D Monte Carlo (MC within MCMC).



Finding an optimal criterion, accounting for uncertainties.
RR = risk ratio =   risk when MC is met / risk if no MC was applied. 
P(MC not met)  =  percentage of rejected batches. 
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Classification problems: ’source attribution’



• Bacteria types sampled from a few broad food categories, 
denoted as ’the sources’.

• E.g. broilers (samples from meat and/or animals), 

• Likewise turkey , cattle, pigs, etc.

• Possibly also other exposures: swimming waters, environment,… 

• Bacteria types from human isolates taken as a mixture sample of sources.

• Problem: assuming human isolates (somehow) originated from those
sources,
• classify each isolate into sources. 

• estimate what fraction of cases are generally from which source (mixture
proportions).        
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Number of types 1,...,J in sample.                          

X11, … , X1J

Proportion (q1) of types 1,…,J in source 1

Number of types 1,...,J in sample.                          

X21, … , X2J

Proportion (q2) of types 1,...,J in source 2

q11, … , q1J

q21, … , q2J

Y1, … , YJ

Number of types 1,...,J 
among human cases.                          

p1 

p2 

p1q1 + p2q2



Bayesian classification methods

• Naive Bayes classifier with sources i = 1,…,I, and types j=1,…,J 
• P(source i | type j) = P(type j | source i) P(source i) / const

• P(source i) = 1/I,  prior probability, i=1,…,I sources.

• P(type j| source i) = Multinomial( qi*,1) with estimated type frequencies qi* 
directly from data: qij* =  xij / ni or smoothed: (xij +1/J)/ (ni+1).

• If P(source i) = pi with prior P(pi), we obtain posterior distribution: 
P(I1,…,IN,p1,…,pI |  x,y ) for the population fractions p (mixture proportions), 
and source labels In for each human case, based on source samples x and 
human samples y.  



Bayesian classification methods

• Posterior predictive classifier
• For a single new isolate in a source i, predictive probability: P(type j |xi ) = Pij

• aj are parameters of the posterior distribution of the type frequencies q in 
that source.

• These predictive probabilities can be used to evaluate
P(source i | type j, x1, …, xI ) = P(type j | xi ) P(source i) / const.
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• Extensions: clustering into unknown number of groups, with training
data for some groups, or without training data (unsupervised
classification), marginal or simultaneous classification, genetic
population structure, evolutionary trees, etc. 

• Here we simply restrict to a fixed defined number of groups described as ”the 
food product types”, each simply represented with some surveillance
samples, with a set of possible types. 

More advanced methods



Simulation experiment with 200 types, 5 sources.
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If many types are frequent in a source
Dirichlet(1,…,1)

If only a few types are frequent in a source
Dirichlet(1/200,…,1/200)



If many types are evenly frequent in each source

5 sources 5*N samples, N human cases



Easy if only a few types dominate in each source





Basics of intake assessment

• Acute exposure to a microbe or chemical:   ∑ Ck * Wk

• Ck = concentration of the hazardous substance per gram, in food type k.

• Wk = consumption amount (in grams) of food type k per serving.

• C and W independent  a model for both occurrence data and consumption data.

• Variability of C between samples, between food types.

• Variability of W between days (for an individual), between individuals.



Listeria risk for a whole week and beyond!   

• Acute risk of illness for e.g. Listeria from ready-to-eat food: the probability
per serving (or per day) to get ill.

• Depends on:
• The probability to consume that food (consumption frequency).
• The probability of Listeria in it (prevalence of Listeria).
• The probability distribution of consumption amount.
• The probability distribution of Listeria concentration.
• Dose-response probability.

• And the growth of bacteria during storage if you eat it later (again).
• And how likely you would continue eating the following days.
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Again, start with evidence synthesis for all
parameters



If you consume bad food on a bad day

• Posterior daily probability of 
illness, if you DO eat food that
was bought contaminated on 
day 1.

• Growth makes it increasingly
risky.
• But only if you eat it, and if you

are still susceptible (i.e. not yet
infected). 



But you can stop eating it any day!   

• Next: take into account the daily 
probability to continue
consumption, and the survival
probability to avoid infection
(probability to be still
susceptible for the first
infection) 



What is the cumulating effect?   

• Cumulative probability of illness
can reach a limit < pq < 1.

• A race of two opposite effects: 
• Bacteria growth versus quit eating

a contaminated product.

- And the winner is?      



In this study we had both exact
concentrations (CFU/g) and values below LOQ    
• Posterior distribution is based on full

likelihood function.
• L(m,s) = ∏ P(yi | m,s2 )   ∏ P(yi < c | m,s2)

• Example: likelihood function
contours if no values below LOQ: 

(same as posterior distribution
contours if uniform prior)

• What if most, or all, measurements are
below LOQ?
• i.e. left censored:  y < c = LOQ

-3 -2 -1 0 1 2 3

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0
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This is what happens to parameter
uncertainty when increasingly more
data points fall below the censoring limit.

In applications, often very large proportion 
of concentration measurements are below LOQ. 



• CFU/g -value itself is an estimate from laboratory.

• Original data: plate counts from dilution series.

• Either way: Bayesian model accounting for true zeros and small
concentrations that may lead to apparent zeros. (zero-inflated models). 

• NOTE: we can only use the data we have. 

The model should reflect this.    

DATA: CFU-values or original plate counts?    



So what then?   

• Bayesian methods have already been long used in many applications
for food safety risk assessment, both chemical and microbiological. 

• Not always called or known to be ”Bayesian”. 
• E.g. simulating outcomes X from model P(X|q) with a range of parameter

values q (randomly from uniform distribution P(q)), then selecting those
parameters that led to a desired outcome X=x. 

this is the simplest Monte Carlo method for a posterior distribution P(q|X=x), 
and the simplest ABC-method (without the ”A”).    

• Potential still not fully exploited.

• Increase probabilistic problems in basic training? 
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Thank you !
Tack !
Kiitos !


