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What happened?

e The guy in the background was attracted to the phone...
o ... despite knowing that his friend was making the notification sounds

 His attention was automatically attracted to sr+rfermative
counterproductive sounds (distraction from current task: watching TV)
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Why study involuntary attention?

e Involuntary attentional orienting can be dangerous in some real-life
situations

o Car driver distracted by flashing mobile phone, worker operating heavy
machinery distracted by blinking lights, ...

e How to study this phenomenon in the lab?
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Temporal Order Judgment (TO))

e Flash two stimuli on screen
e Task: which stimulus appeared first?

o Difficulty depends on the time between the onset of the stimuli (SOA)
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Counterproductive TO)

e An exogenous cue is used to attract attention towards one placeholder

e The stimulus on the attended location is perceived as first even when
appearing second

o What if the cue is always wrong, i.e., appearing on the location of the
second stimulus?
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Bayesian multilevel modeling

e logistic regression, varying intercepts & slopes on participants
o highly informative priors (from a pilot study)
e model comparison:

1. full model (SOA + cue + SOA x cue)

2. main effects (SOA + cue)

3. main effect of SOA

4. main effect of cue

5. null model (intercept only)
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Bayesian multilevel modeling

logistic regression, varying intercepts & slopes on participants
highly informative priors (from a pilot study)
model comparison:
1. full model (SOA + cue + SOA x cue)
2. main effects (SOA + cue)
3. main effect of SOA
4. main effect of cue
5. null model (intercept only)
on the winning model:

o diagnostics & posterior predictive checks
o hypothesis testing
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Bayesian multilevel modeling with brms

s aarsssssssy full model (SOA * cue) HAHHHHHHHHHHHHHHHHHIY
model.full <- brm(num.horizist | trials(tot.trials) ~ SOA * cue +

(SOA * cue || participant),

data = data.TO0J,

family = binomial("logit"),

prior = priors.full,

sample_prior = TRUE,

inits = "random",

control = list(adapt_delta = .9),

chains = 4,

iter = 2000,

warmup = 500,

thin = 1,

algorithm = "sampling",

cores = 4,

seed = 9001)
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Bayesian multilevel modeling with brms

HHHHHHHHHHHRRR BRI RRRE main effect of SOA HHHHHHHHHHHUHHHHHHHHY
model.SOA <- brm(num.horizilst | trials(tot.trials) ~ SOA +
(SOA || participant),
data = data.TO0J,
family = binomial("logit"),
prior = priors.SOA,
sample_prior = TRUE,
inits = "random",
control = list(adapt_delta = .9),
chains = 4,
iter = 2000,
warmup = 500,
thin = 1,
algorithm = "sampling",
cores = 4,
seed = 9001)
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Model comparison with brms

(leave-one-out cross-validation)

model.comparison <- LOO( # list with all models
model.full, model.mains, model.SOA, model.cue, model.null,
reloo = TRUE, # exact CV for problematic observations

compare = FALSE) # do not compare models with each other

## models LO0.IC
## 1 mains 2727.31
H# 2 full 2844.49
## 3 SOA 3628.22
##t 4 cue 7998.10
## 5 null 8275.49
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brms output

(main effects model, only constant effects)

## [1] "Population-Level Effects: "

# [2] " Estimate Est.Error 1-95% CI u-95% CI Eff.Sample Rhat"
## [3] "Intercept 0.06 0.06 -0.06 0.19 4716 1.00"
## [4] "SOAM217 -2.64 0.13 -2.89 -2.38 4256 1.00"
## [5] "SOAM150 -2.23 0.13 -2.50 -1.97 3727 1.00"
## [6] "SOAM83 -1.53 0.10 -1.73 -1.34 4928 1.00"
## [7] "SOAM17 -0.35 0.06 -0.47 -0.22 6000 1.00"
## [8] "SOAP17 0.21 0.06 0.09 0.33 6000 1.00"
## [9] "SOAP83 1.60 0.11 1.39 1.81 4528 1.00"
## [10] "SOAP150 2.42 0.16 2.11 2.72 3422 1.00"
## [11] "SOAP217 2.73 0.16 2.41 3.06 3851 1.00"
## [12] "cuevertical.cued -0.80 0.06 -0.93 -0.68 6000 1.00"
## [13] "cuehorizontal.cued 0.86 0.07 0.73 1.00 5145 1.00"
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MCMC chains

library(bayesplot) . b_Intercept
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Posterior Predictive Checks
pp_check(model.mains, no.cue vertical.cued horizontal.cued

nsamples = NULL,
type = "stat_grouped",

group = "cue"

7 = mean

T(yrep)
| 70,

0.490.500.510.520.53  0.58 0.60 0.62 0.64 0.66  0.40 042 0.44 0.46
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Observed vs. predicted data
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Hypothesis testing

(no cue vs. vertical cued conditions)

# posterior probability
# under the hypothesis 20 %)fo clle
# (no.cue=vertical.cued) veﬁical.cued
# against its alternative 15
# (no.cue=/=vertical.cued) ‘%
hypothesis(model.mains, é 10
"Intercept = Intercept + cuevertical.cued")
5
ol
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Hypothesis testing
(pilot vs. current experiment)
no cue vertical cued horizontal cued
15 25 25
type type type
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prior prior prior
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the winning model is the best in terms of predictive accuracy
observed and predicted data are very similar
"horizontal first" responses are less likely when the vertical lines are cued
o comparison of the posterior distributions of no cue and vertical cued
conditions
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Conclusions

What we have learned:

e SOA and cue influence performance independently
o comparison of theoretically plausible multilevel models

e the winning model is the best in terms of predictive accuracy

» observed and predicted data are very similar

e "horizontal first" responses are less likely when the vertical lines are cued
o comparison of the posterior distributions of no cue and vertical cued

conditions

» data of pilot and current experiment are very similar
o comparison of prior and posterior distributions of cue conditions

e .. and much more! Thanks for brms, @paulbuerkner!
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Thanks for your attention!

antonio.schettino@ugent.be
asch3tti.netlify.com
_(@asch3tti

Slides available here:
https://asch3tti.netlify.com/post/bayesatlund2018/
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