An introduction to Bayesian computation & evidence synthesis using Stan

mc-stan.org

About the speaker

Robert Grant is senior lecturer in health & social care statistics at Kingston University & St George's, University of London, UK

Wrote the StataStan interface

Interested in Bayesian latent variable models

robertgrantstats.co.uk

Bayesian computation

Computer-intensive methods Simulation

Metropolis algorithm (40s) Metropolis-Hastings algorithm (70s) Gibbs sampler (80s) Hamiltonian Monte Carlo (80s)

Bayesian software

M-H / Gibbs: BUGS, JAGS, JASP, SAS (proc mcmc), Stata (bayesmh)

Hamiltonian MC: Stan

Hamiltonian Monte Carlo

Speed (rotation-invariance + convergence + mixing)

Flexibility of priors

Stability to initial values

See Radford Neal's chapter in the Handbook of MCMC

Hamiltonian Monte Carlo

Tuning is tricky

One solution is the No U-Turn Sampler (NUTS)

Stan is a C++ library for NUTS (and variational inference, and L-BFGS)

Figure 7: Samples generated by random-walk Metropolis, Gibbs sampling, and NUTS. The plots compare 1,000 independent draws from a highly correlated 250-dimensional distribution (right) with 1,000,000 samples (thinned to 1,000 samples for display) generated by random-walk Metropolis (left), 1,000,000 samples (thinned to 1,000 samples for display) generated by Gibbs sampling (second from left), and 1,000 samples generated by NUTS (second from right). Only the first two dimensions are shown here.

http://www.stat.columbia.edu/~gelman/research/published/nuts.pdf

Some Stan model code

```
data {
      int N;
      real y[N];
      real x[N];
}
parameters {
      real beta[2];
      real<lower=0> sigma;
}
model {
      real mu[N];
      beta ~ normal(0, 50);
      sigma ~ normal(0,20);
      for(i in 1:N) {
             mu[i] <- beta[1] + beta[2]*x[i];</pre>
      }
      y ~ normal(mu,sigma);
}
```

rstan

CmdStan

make "C:\model.exe"

model.exe sample data file="mydata.R"

stansummary.exe output.csv

StataStan

global cmdstandir "C:/cmdstan-2.9.0"

quietly count
global N=r(N)

stan y x1 x2 x3, modelfile("model.stan") ///
cmd("\$cmdstandir") globals("N")

Some simulations

Collaboration with Furr, Carpenter, Rabe-Hesketh, Gelman arxiv.org/pdf/1601.03443v1.pdf rstan v StataStan v JAGS v Stata

More recently: rstan v rjags robertgrantstats.co.uk/rstan_v_jags.R

Rasch model (item-response)

$$\Pr(y_{ip} = 1 | \theta_p, \delta_i) = \text{logit}^{-1}(\theta_p + \delta_i)$$
$$\theta_p \sim N(0, \sigma^2)$$

Hierarchical Rasch model (includes hyperpriors)

$$\Pr(y_{ip} = 1 | \mu, \theta_p, \delta_i) = \text{logit}^{-1}(\mu + \theta_p + \delta_i)$$
$$\theta_p \sim N(0, \sigma^2)$$
$$\delta_i \sim N(0, \tau^2)$$

StataStan vs Stata vs rjags

rstan vs rjags

Seconds:	Rasch	H-Rasch
rstan	180	210
rjags	558	1270

ESS (sigma):	Rasch	H-Rasch
rstan	22965	21572
rjags	7835	8098

ESS (theta1):	Rasch	H-Rasch
rstan	32000	32000
rjags	19119	19637

rstan vs rjags

rstan vs rjags

Evidence synthesis

Bayesian models can go beyond crude approximations

Different statistics Different metrics Different scales Other uncertainty & bias

Coarsened data

See Heitjan & Rubin 1990

Given proportion achieving a threshold at endpoint, and baseline statistics, we can work out a posterior conditional distribution for the endpoint means.

We may have to assume, model or simulate SDs, correlation...

Cochrane review of tricyclic antidepressants in children (latest update: Mizraei et al 2013)

13 trials, sample size between 6 and 173

8 trials: mean differences & responders, one responder only

Mostly relative-ratio, but some ambiguity

Simulation study

Relative-ratio, 1000 simulations

Simulation study

Relative-ratio, 1000 simulations

Simulation study

Cochrane review results

From Mizraei et al: mean reduction (SMD) of 0.32 CI 0.04 to 0.59 risk ratio for responding: 1.07 CI 0.91 to 1.26 From the Bayesian model: mean reduction (on CDRS scale) of **3.8** points CI 2.4 to 5.4

A more complex setting Review of psycho-social benefits of exercise in osteoarthritis

Lots of differences among studies Change from baseline vs endpoint Duration of intervention A structural equation model

Getting started

mc-stan.org

stan-users Google Group