BAYESIAN MODEL INFERENCE WHY, WHAT AND HOW? (AND WHEN NOT)

Mattias Villani

Division of Statistics and Machine Learning Department of Computer and Information Science Linköping University

MATTIAS VILLANI (STATISTICS, LIU)

- Why models?
- What is Bayesian model comparison?
- How are the actual computations done?
- When not to do Bayesian model comparison.

MATTIAS VILLANI (STATISTICS, LIU)

Me, Myself and I

- PhD in Statistics from Stockholm University (2000).
- Econometric research at Sveriges Riksbank in a previous life.
- Professor of Statistics at LiU (since 2011).
- Natural Born Bayesian.
- Current application areas:
 - Big data problems
 - Neuroimaging
 - Text analysis

WHY MODELS?

- A model can have many uses:
 - Abstraction to **aid in thinking** and **communication**.
 - Prediction.
 - **Compact description** of a complex phenomena.
- "All models are false, but some are useful"
- How to select a model from a set of models?
- ► Thou shalt not have more than one model? Model averaging.
- Models can be derived from assumptions of exchangability of observations (Bernardo and Smith, 1994).

USING LIKELIHOOD FOR MODEL COMPARISON

- Consider two models for the data $\mathbf{y} = (y_1, ..., y_n)$: M_1 and M_2 .
- Let $p_i(\mathbf{y}|\theta_i)$ denote the data density under model M_i .
- If know θ_1 and θ_2 , the **likelihood ratio** is useful

 $\frac{p_1(\mathbf{y}|\theta_1)}{p_2(\mathbf{y}|\theta_2)}.$

► The likelihood ratio with ML estimates plugged in:

 $\frac{p_1(\mathbf{y}|\hat{\theta}_1)}{p_2(\mathbf{y}|\hat{\theta}_2)}.$

- Bigger models always win in estimated likelihood ratio.
- Hypothesis tests are problematic for non-nested models. End results is not very useful for analysis.

MATTIAS VILLANI (STATISTICS, LIU)

BAYESIAN MODEL COMPARISON

- Just use your priors $p_1(\theta_1)$ och $p_2(\theta_2)$.
- The marginal likelihood for model M_k with parameters θ_k

$$p_k(y) = \int p_k(y|\theta_k) p_k(\theta_k) d\theta_k.$$

- θ_k is removed by the prior. Not a magic bullet. Priors matter!
- The Bayes factor

$$B_{12}(y) = \frac{p_1(y)}{p_2(y)}.$$

Posterior model probabilities

PRIORS MATTER

EXAMPLE: GEOMETRIC VS POISSON

- ► Model 1 Geometric with Beta prior:
 - $y_1, ..., y_n | \theta_1 \sim Geo(\theta_1)$
 - $\theta_1 \sim Beta(\alpha_1, \beta_1)$
- Model 2 Poisson with Gamma prior:
 - $y_1, ..., y_n | \theta_2 \sim Poisson(\theta_2)$
 - $\theta_2 \sim Gamma(\alpha_2, \beta_2)$
- Marginal likelihood for M₁

$$p_1(y_1, ..., y_n) = \int p_1(y_1, ..., y_n | \theta_1) p(\theta_1) d\theta_1$$

=
$$\frac{\Gamma(\alpha_1 + \beta_1)}{\Gamma(\alpha_1) \Gamma(\beta_1)} \frac{\Gamma(n + \alpha_1) \Gamma(n\bar{y} + \beta_1)}{\Gamma(n + n\bar{y} + \alpha_1 + \beta_1)}$$

► Marginal likelihood for *M*₂

$$p_2(y_1, ..., y_n) = \frac{\Gamma(n\bar{y} + \alpha_2)\beta_2^{\alpha_2}}{\Gamma(\alpha_2)(n + \beta_2)^{n\bar{y} + \alpha_2}} \frac{1}{\prod_{i=1}^n y_i!}$$

MATTIAS VILLANI (STATISTICS, LIU)

GEOMETRIC AND POISSON

MATTIAS VILLANI (STATISTICS, LIU)

GEOMETRIC VS POISSON, CONT.

Priors match prior predictive means:

$$E(y_i|M_1) = E(y_i|M_2) \iff \alpha_1\alpha_2 = \beta_1\beta_2$$

MATTIAS VILLANI (STATISTICS, LIU)

GEOMETRIC VS POISSON, CONT.

▶ Priors match prior predictive means:

$$E(y_i|M_1) = E(y_i|M_2) \iff \alpha_1 \alpha_2 = \beta_1 \beta_2$$

Data : $y_1 = 0$, $y_2 = 0$.							
	$lpha_1=$ 1, $eta_1=$ 2	$lpha_1=$ 10, $eta_1=$ 20	$lpha_1=$ 100, $eta_1=$ 200				
	$lpha_2=$ 2, $eta_2=$ 1	$lpha_2=$ 20, $eta_2=$ 10	$lpha_2=$ 200, $eta_2=$ 100				
BF_{12}	1.5	4.54	5.87				
$\Pr(M_1 \mathbf{y})$	0.6	0.82	0.85				
$\Pr(M_2 \mathbf{y})$	0.4	0.18	0.15				

GEOMETRIC VS POISSON, CONT.

▶ Priors match prior predictive means:

$$E(y_i|M_1) = E(y_i|M_2) \iff \alpha_1\alpha_2 = \beta_1\beta_2$$

Data : $y_1 = 0, y_2 = 0.$							
	$lpha_1=$ 1, $eta_1=$ 2	$lpha_1=$ 10, $eta_1=$ 20	$lpha_1=$ 100, $eta_1=$ 200				
	$lpha_2=$ 2, $eta_2=$ 1	$lpha_2=$ 20, $eta_2=$ 10	$lpha_2=$ 200, $eta_2=$ 100				
BF_{12}	1.5	4.54	5.87				
$\Pr(M_1 \mathbf{y})$	0.6	0.82	0.85				
$\Pr(M_2 \mathbf{y})$	0.4	0.18	0.15				
Data: $y_1 =$	3, $y_2 = 3$.						
	$lpha_1=$ 1, $eta_1=$ 2	$lpha_1=$ 10, $eta_1=$ 20	$lpha_1=$ 100, $eta_1=$ 200				
	$lpha_2=$ 2, $eta_2=$ 1	$lpha_2=$ 20, $eta_2=$ 10	$lpha_2=200$, $eta_2=100$				
BF_{12}	0.26	0.29	0.30				
$\Pr(M_1 \mathbf{y})$	0.21	0.22	0.23				
$\Pr(M_2 \mathbf{y})$	0.79	0.78	0.77				

MATTIAS VILLANI (STATISTICS, LIU)

GEOMETRIC VS POISSON FOR POIS(1) DATA

GEOMETRIC VS POISSON FOR POIS(1) DATA

MODEL CHOICE IN MULTIVARIATE TIME SERIES

Multivariate time series

$$\mathbf{x}_{t} = \alpha \beta' \mathbf{z}_{t} + \Phi_{1} \mathbf{x}_{t-1} + \dots \Phi_{k} \mathbf{x}_{t-k} + \Psi_{1} + \Psi_{2} t + \Psi_{3} t^{2} + \varepsilon_{t}$$

- Need to choose:
 - ▶ Lag length, (k = 1, 2.., 4)
 - ▶ **Trend model** (*s* = 1, 2, ..., 5)
 - Long-run (cointegration) relations (r = 0, 1, 2, 3, 4).

THE MOST PROBABLE (k, r, s) COMBINATIONS IN THE DANISH MONETARY DATA.

k	1	1	1	1	1	1	1	1	0	1
r	3	3	2	4	2	1	2	3	4	3
s	3	2	2	2	3	3	4	4	4	5
p(k, r, s y, x, z)	.106	.093	.091	.060	.059	.055	.054	.049	.040	.038

GRAPHICAL MODELS FOR MULTIVARIATE TIME SERIES

- Graphical models for multivariate time series.
- Zero-restrictions on the effect from time series *i* on time series *j*, for all lags. (Granger Causality).
- Zero-restrictions on the elements of the inverse covariance matrix of the errors.

BAYESIAN HYPOTHESIS TESTING

• Hypothesis testing is just a special case of model selection:

$$\begin{split} M_0 : & y_1, \dots, y_n \overset{iid}{\sim} Bernoulli(\theta_0) \\ M_1 : & y_1, \dots, y_n \overset{iid}{\sim} Bernoulli(\theta), \theta \sim Beta(\alpha, \beta) \\ & p(y_1, \dots, y_n | M_0) = \theta_0^s (1 - \theta_0)^f, \\ p(y_1, \dots, y_n | M_1) &= \int_0^1 \theta^s (1 - \theta)^f B(\alpha, \beta)^{-1} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} d\theta \\ &= B(\alpha + s, \beta + f) / B(\alpha, \beta). \end{split}$$

Posterior model probabilities

 $Pr(M_k|y_1, ..., y_n) \propto p(y_1, ..., y_n|M_k)Pr(M_k)$, for k = 0, 1.

Equivalent to using 'spike-and-slab' prior:

$$p(\theta) = \pi I_{\theta_0}(\theta) + (1 - \pi) Beta(\alpha, \beta)$$

▶ Note: data can now *support* a null hypothesis (not only reject it).

MATTIAS VILLANI (STATISTICS, LIU)

Spike-and-slab prior

MATTIAS VILLANI (STATISTICS, LIU)

 π

SPIKE-AND-SLAB PRIOR FOR VARIABLE SELECTION

----- -

Posterior summary of the one-component split-t model.^a

Parameters	Mean	Stdev	Post.Incl.				
location u							
Const	0.084	0.019	-				
Scale ϕ							
Const	0.402	0.035	-				
LastDay	-0.190	0.120	0.036				
LastWeek	-0.738	0.193	0.985				
LastMonth	-0.444	0.086	0.999				
CloseAbs95	0.194	0.233	0.035				
CloseSqr95	0.107	0.226	0.023				
MaxMin95	1.124	0.086	1.000				
CloseAbs80	0.097	0.153	0.013				
CloseSqr80	0.143	0.143	0.021				
MaxMin80	-0.022	0.200	0.017				
Degrees of freedom v							
Const	2.482	0.238	-				
LastDay	0.504	0.997	0.112				
LastWeek	-2.158	0.926	0.638				
LastMonth	0.307	0.833	0.089				
CloseAbs95	0.718	1.437	0.229				
CloseSqr95	1.350	1.280	0.279				
MaxMin95	1.130	1.488	0.222				
CloseAbs80	0.035	1.205	0.101				
CloseSqr80	0.363	1.211	0.112				
MaxMin80	- 1.672	1.172	0.254				
Skewness λ							
Const	-0.104	0.033	-				
LastDay	-0.159	0.140	0.027				
LastWeek	-0.341	0.170	0.135				
LastMonth	-0.076	0.112	0.016				
CloseAbs95	-0.021	0.096	0.008				
CloseSqr95	- 0.003	0.108	0.006				
MaxMin95	0.016	0.075	0.008				
CloseAbs80	0.060	0.115	0.009				
CloseSqr80	0.059	0.111	0.010				
MaxMin80	0.093	0.096	0.013				

MATTIAS VILLANI (STATISTICS, LIU)

PROPERTIES OF BAYESIAN MODEL COMPARISON

Coherence of pair-wise comparisons

$$B_{12} = B_{13} \cdot B_{32}$$

• **Consistency** when true model is in $\mathcal{M} = \{M_1, ..., M_K\}$

$$\Pr\left(M = M_{TRUE} | \mathbf{y}\right) \rightarrow 1$$
 as $n \rightarrow \infty$

• "KL-consistency" when $M_{TRUE} \notin \mathcal{M}$

$$\Pr\left(M = M^* | \mathbf{y}\right) \to 1 \text{ as } n \to \infty$$

where M^* is the model that minimizes Kullback-Leibler distance between $p_M(\mathbf{y})$ and $p_{TRUE}(\mathbf{y})$.

- Smaller models always win when priors are very vague.
- Improper priors cannot be used for model comparison.

MARGINAL LIKELIHOOD MEASURES OUT-OF-SAMPLE PREDICTIVE PERFORMANCE

The marginal likelihood can be decomposed as

$$p(y_1, ..., y_n) = p(y_1)p(y_2|y_1)\cdots p(y_n|y_1, y_2, ..., y_{n-1})$$

• If we assume that y_i is independent of $y_1, ..., y_{i-1}$ conditional on θ :

$$p(y_i|y_1,...,y_{i-1}) = \int p(y_i|\theta) p(\theta|y_1,...,y_{i-1}) d\theta$$

- The prediction of y₁ is based on the prior of θ, and is therefore sensitive to the prior.
- The prediction of y_n uses almost all the data to infer θ. Very little influenced by the prior when n is not small.

MATTIAS VILLANI (STATISTICS, LIU)

NORMAL EXAMPLE

- Model: $y_1, ..., y_n | \theta \sim N(\theta, \sigma^2)$ with σ^2 known.
- **Prior**: $\theta \sim N(0, \kappa^2 \sigma^2)$.

• Intermediate posterior at time i-1

$$\theta|y_1, \dots, y_{i-1} \sim N\left[w_i(\kappa) \cdot \bar{y}_{i-1}, \frac{\sigma^2}{i-1+\kappa^{-2}}\right]$$

where $w_i(\kappa) = \frac{i-1}{i-1+\kappa^{-2}}$.

Predictive density at time i - 1

$$y_i | y_1, ..., y_{i-1} \sim N\left[w_i(\kappa) \cdot \bar{y}_{i-1}, \sigma^2\left(1 + \frac{1}{i - 1 + \kappa^{-2}}\right)\right]$$

• Terms with *i* large: $y_i|y_1, ..., y_{i-1} \stackrel{approx}{\sim} N\left(\bar{y}_{i-1}, \sigma^2\right)$, not sensitive to κ • For $i = 1, y_1 \sim N\left[0, \sigma^2\left(1 + \frac{1}{\kappa^{-2}}\right)\right]$ can be very sensitive to κ .

MATTIAS VILLANI (STATISTICS, LIU)

FIRST OBSERVATION IS SENSITIVE TO κ

MATTIAS VILLANI (STATISTICS, LIU)

FIRST OBSERVATION IS SENSITIVE TO κ

LOG PREDICTIVE SCORE - LPS

- To reduce sensitivity to the prior: sacrifice n* observations to train the prior into a better posterior.
- Predictive density score: PS

$$PS(n^*) = p(y_{n^*+1}|y_1, ..., y_{n^*}) \cdots p(y_n|y_1, ..., y_{n-1})$$

- Usually report on log scale: Log Predictive Score (LPS).
- But which observations to train on (and which to test on)?
- Straightforward for time series.
- Cross-sectional data: cross-validation.

MODEL AVERAGING

- Let γ be a quanitity with an interpretation which stays the same across the two models.
- Example: Prediction $\gamma = (y_{T+1}, ..., y_{T+h})'$.
- The marginal posterior distribution of γ reads

 $p(\gamma|\mathbf{y}) = p(M_1|\mathbf{y})p_1(\gamma|\mathbf{y}) + p(M_2|\mathbf{y})p_2(\gamma|\mathbf{y}),$

where $p_k(\gamma | \mathbf{y})$ is the marginal posterior of γ conditional on model k.

- Predictive distribution includes three sources of uncertainty:
 - **Future errors**/disturbances (e.g. the ε 's in a regression)
 - Parameter uncertainty (the predictive distribution has the parameters integrated out by their posteriors)
 - Model uncertainty (by model averaging)

MARGINAL LIKELIHOOD IN CONJUGATE MODELS

- Computing the marginal likelihood requires integration w.r.t. θ .
- ► Short cut for conjugate models by rearragement of Bayes' theorem:

$$p(y) = rac{p(y|\theta)p(\theta)}{p(\theta|y)}$$

Bernoulli model example

$$p(\theta) = \frac{1}{B(\alpha, \beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$
$$p(y|\theta) = \theta^{s} (1 - \theta)^{f}$$
$$p(\theta|y) = \frac{1}{B(\alpha + s, \beta + f)} \theta^{\alpha + s - 1} (1 - \theta)^{\beta + f - 1}$$

Marginal likelihood

$$p(y) = \frac{\theta^{s}(1-\theta)^{f} \frac{1}{B(\alpha,\beta)} \theta^{\alpha-1} (1-\theta)^{\beta-1}}{\frac{1}{B(\alpha+s,\beta+f)} \theta^{\alpha+s-1} (1-\theta)^{\beta+f-1}} = \frac{B(\alpha+s,\beta+f)}{B(\alpha,\beta)}$$

MATTIAS VILLANI (STATISTICS, LIU)

COMPUTING THE MARGINAL LIKELIHOOD

Usually difficult to evaluate the integral

$$p(\mathbf{y}) = \int p(\mathbf{y}|\theta) p(\theta) d\theta = E_{p(\theta)}[p(\mathbf{y}|\theta)].$$

• Draw from the prior $\theta^{(1)}, ..., \theta^{(N)}$ and use the Monte Carlo estimate

$$\hat{p}(\mathbf{y}) = \frac{1}{N} \sum_{i=1}^{N} p(\mathbf{y}|\theta^{(i)}).$$

Unstable if the posterior is somewhat different from the prior.

▶ Importance sampling. Let $\theta^{(1)}, ..., \theta^{(N)}$ be iid draws from $g(\theta)$.

$$\int p(\mathbf{y}|\theta)p(\theta)d\theta = \int \frac{p(\mathbf{y}|\theta)p(\theta)}{g(\theta)}g(\theta)d\theta \approx N^{-1}\sum_{i=1}^{N} \frac{p(\mathbf{y}|\theta^{(i)})p(\theta^{(i)})}{g(\theta^{(i)})}$$

Modified Harmonic mean: g(θ) = N(θ̃, Σ̃) · I_c(θ), where θ̃ and Σ̃ is the posterior mean and covariance matrix estimated from an MCMC chain, and I_c(θ) = 1 if (θ − θ̃)[']Σ̃⁻¹(θ − θ̃) ≤ c.

MATTIAS VILLANI (STATISTICS, LIU)

COMPUTING THE MARGINAL LIKELIHOOD, CONT.

- ► Rearrangement of Bayes' theorem: $p(\mathbf{y}) = p(\mathbf{y}|\theta)p(\theta)/p(\theta|\mathbf{y})$.
- ▶ We must know the posterior, **including** the normalization constant.
- But we only need to know $p(\theta|\mathbf{y})$ in a single point θ_0 .
- Kernel density estimator to approximate $p(\theta_0|\mathbf{y})$. Unstable.
- Chib (1995, JASA) provide better solutions for Gibbs sampling.
- Chib-Jeliazkov (2001, JASA) generalizes to MH algorithm (good for IndepMH, terrible for RWM).
- ► Reversible Jump MCMC (RJMCMC) for model inference.
 - MCMC methods that moves in model space.
 - Proportion of iterations spent in model k estimates $Pr(M_k|\mathbf{y})$.
 - ► Usually hard to find efficient proposals. Sloooow convergence.

Bayesian nonparametrics (e.g. Dirichlet process priors).

APPROXIMATE MARGINAL LIKELIHOODS

Taylor approximation of the log posterior

$$\begin{split} \mathsf{n}\, p(\mathbf{y}|\theta) p(\theta) &\approx \mathsf{ln}\, p(\mathbf{y}|\hat{\theta}) + \mathsf{ln}\, p(\hat{\theta}) - \frac{1}{2} J_{\hat{\theta},\mathbf{y}}(\theta - \hat{\theta})^2, \\ p(\mathbf{y}|\theta) p(\theta) &\approx p(\mathbf{y}|\hat{\theta}) p(\hat{\theta}) \exp\left[-\frac{1}{2} J_{\hat{\theta},\mathbf{y}}(\theta - \hat{\theta})^2\right] \end{split}$$

The Laplace approximation:

$$\ln \hat{\rho}(\mathbf{y}) = \ln \rho(\mathbf{y}|\hat{\theta}) + \ln \rho(\hat{\theta}) + \frac{1}{2} \ln \left| J_{\hat{\theta},\mathbf{y}}^{-1} \right| + \frac{p}{2} \ln(2\pi),$$

where p is the number of unrestricted parameters in the model.

- Note that \(\heta\) and \(J_{\heta,y}\) can be obtained with numerical optimization with BFGS update of Hessian.
- ► The BIC approximation is obtained if J_{θ,y} behaves like n · I_p in large samples

$$\ln \hat{p}(\mathbf{y}) = \ln p(\mathbf{y}|\hat{\theta}) + \ln p(\hat{\theta}) - \frac{p}{2} \ln n.$$

MATTIAS VILLANI (STATISTICS, LIU)

AND HEY! ... LET'S BE CAREFUL OUT THERE.

- ▶ Be especially careful with Bayesian model comparison when
 - The compared models are
 - very different in structure
 - severly misspecified
 - very complicated (black boxes).
 - The priors for the parameters in the models are
 - not carefully elicited
 - only weakly informative
 - not matched across models.
 - The data
 - has outliers (in all models)
 - has a multivariate response.

HASTA LA VICTORIA SIEMPRE!

MATTIAS VILLANI (STATISTICS, LIU)