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OVERVIEW

I Why models?

I What is Bayesian model comparison?

I How are the actual computations done?

I When not to do Bayesian model comparison.
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ME, MYSELF AND I

I PhD in Statistics from Stockholm University (2000).

I Econometric research at Sveriges Riksbank in a previous life.

I Professor of Statistics at LiU (since 2011).

I Natural Born Bayesian.

I Current application areas:
I Big data problems
I Neuroimaging
I Text analysis
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WHY MODELS?

I A model can have many uses:
I Abstraction to aid in thinking and communication.
I Prediction.
I Compact description of a complex phenomena.

I “All models are false, but some are useful”

I How to select a model from a set of models?

I Thou shalt not have more than one model? Model averaging.

I Models can be derived from assumptions of exchangability of
observations (Bernardo and Smith, 1994).
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USING LIKELIHOOD FOR MODEL COMPARISON

I Consider two models for the data y = (y1, ..., yn): M1 and M2.
I Let pi (y|θi ) denote the data density under model Mi .

I If know θ1 and θ2, the likelihood ratio is useful

p1(y|θ1)

p2(y|θ2)
.

I The likelihood ratio with ML estimates plugged in:

p1(y|θ̂1)

p2(y|θ̂2)
.

I Bigger models always win in estimated likelihood ratio.
I Hypothesis tests are problematic for non-nested models. End results

is not very useful for analysis.
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BAYESIAN MODEL COMPARISON

I Just use your priors p1(θ1) och p2(θ2).
I The marginal likelihood for model Mk with parameters θk

pk(y) =
∫

pk(y |θk)pk(θk)dθk .

I θk is removed by the prior. Not a magic bullet. Priors matter!
I The Bayes factor

B12(y) =
p1(y)

p2(y)
.

I Posterior model probabilities

Pr(Mk |y)︸ ︷︷ ︸
posterior model prob.

∝ p(y|Mk)︸ ︷︷ ︸
marginal likelihood

· Pr(Mk)︸ ︷︷ ︸
prior model prob.
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PRIORS MATTER

θ
-2 0 2

P
ri
o
r 

p
ro

b
a
b
ili

ty

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Three-point prior for θ

y
-5 -4 -3 -2 -1 0 1 2 3 4 5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Marginal likelihood for N(θ ,1) model

θ=-2
θ=0
θ=2
Marg. Like.

MATTIAS VILLANI (STATISTICS, LIU) BAYES@LUND2015 7 / 30



EXAMPLE: GEOMETRIC VS POISSON
I Model 1 - Geometric with Beta prior:

I y1, ..., yn|θ1 ∼ Geo(θ1)
I θ1 ∼ Beta(α1, β1)

I Model 2 - Poisson with Gamma prior:
I y1, ..., yn|θ2 ∼ Poisson(θ2)
I θ2 ∼ Gamma(α2, β2)

I Marginal likelihood for M1

p1(y1, ..., yn) =
∫

p1(y1, ..., yn|θ1)p(θ1)dθ1

=
Γ (α1 + β1)

Γ (α1) Γ (β1)

Γ (n+ α1) Γ (nȳ + β1)

Γ (n+ nȳ + α1 + β1)

I Marginal likelihood for M2

p2(y1, ..., yn) =
Γ(nȳ + α2)βα2

2
Γ(α2)(n+ β2)nȳ+α2

1
∏n

i=1 yi !
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GEOMETRIC AND POISSON
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GEOMETRIC VS POISSON, CONT.
I Priors match prior predictive means:

E (yi |M1) = E (yi |M2) ⇐⇒ α1α2 = β1β2

I Data: y1 = 0, y2 = 0.
α1 = 1, β1 = 2 α1 = 10, β1 = 20 α1 = 100, β1 = 200
α2 = 2, β2 = 1 α2 = 20, β2 = 10 α2 = 200, β2 = 100

BF12 1.5 4.54 5.87
Pr(M1|y) 0.6 0.82 0.85
Pr(M2|y) 0.4 0.18 0.15

I Data: y1 = 3, y2 = 3.
α1 = 1, β1 = 2 α1 = 10, β1 = 20 α1 = 100, β1 = 200
α2 = 2, β2 = 1 α2 = 20, β2 = 10 α2 = 200, β2 = 100

BF12 0.26 0.29 0.30
Pr(M1|y) 0.21 0.22 0.23
Pr(M2|y) 0.79 0.78 0.77
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GEOMETRIC VS POISSON FOR POIS(1) DATA
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GEOMETRIC VS POISSON FOR POIS(1) DATA
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MODEL CHOICE IN MULTIVARIATE TIME SERIES

I Multivariate time series

xt = αβ′zt + Φ1xt−1 + ...Φkxt−k + Ψ1 + Ψ2t + Ψ3t
2 + εt

I Need to choose:
I Lag length, (k = 1, 2.., 4)
I Trend model (s = 1, 2, ..., 5)
I Long-run (cointegration) relations (r = 0, 1, 2, 3, 4).

10 JUKKA CORANDER AND MATTIAS VILLANI

• Model 1: The level data wt have no deterministic trends and the cointe-
grating relations Λwt−1 do not have intercepts

• Model 2: The level data wt have no deterministic trends and the cointe-
grating relations Λwt−1 have intercepts

• Model 3: The level data wt have linear trends and the cointegrating rela-
tions Λwt−1 have intercepts

• Model 4: The level data wt have linear trends and the cointegrating rela-
tions Λwt−1 have linear trends

• Model 5: The level data wt have quadratic trends and the cointegrating
relations Λwt−1 have linear trends

The different trend types are obtained by adding either 1 or t, or both, to wt−1
and dt, see Johansen (1995) for a detailed description.
The dimensionality determination in cointegrated processes thus involves a

wider variety of quantities: the number of lags in the process (k = 0, 1, ...) the
number of cointegration relationships (r = 0, 1, ..., rmax) and the choice of trend
type (s = 1, 2, ..., 5).
As an illustration we analyze a small monetary system of Denmark, described

in Johansen (1995), which consists of log real money (M2), log real income, the
bank deposit rate and a bond rate. Data are in quarterly observations over the
period 1974:1 to 1987:3. To keep the range of models at a reasonable level, we
restrict the number of lags to be no larger than four. If this upper limit should
prove to be too small, the posterior mass would be concentrated on the largest
values, and the model class could thereby be extended after the initial analysis.
Note that when either r = 0 or r = rmax, some of the (k, r, s)-combinations

define the same model. To list the equivalent models, we make use of the symbol
M
= as an equivalence relation over the set of (k, r, s)-combinations. The following
equivalences then holds for all k:

(k, rmax, 2)
M
= (k, rmax, 3), (k, rmax, 4)

M
= (k, rmax, 5),

(k, 0, s = 1)
M
= (k, 0, s = 2) and (k, 0, s = 3) M= (k, 0, s = 4).

Removing all redundant models leaves 105models to be considered and the models
with largest posterior probabilities are listed in Table 1.

Table 1

The most probable (k, r, s) combinations in the Danish monetary data.

k 1 1 1 1 1 1 1 1 0 1
r 3 3 2 4 2 1 2 3 4 3
s 3 2 2 2 3 3 4 4 4 5

p(k, r, s|y, x, z) .106 .093 .091 .060 .059 .055 .054 .049 .040 .038

First, we notice that the posterior of the number of lags in the process is con-
centrated on k = 1, suggesting that there is no need to enlarge the initial class
of models in this respect. It is also clear that the uncertainty about cointegration
rank is prominent. For comparison, the asymptotic criteria choose the following
models: SBC (k = 0, r = 1, s = 2), AIC (k = 1, r = 3, s = 3), which further
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GRAPHICAL MODELS FOR MULTIVARIATE TIME SERIES

I Graphical models for multivariate time series.
I Zero-restrictions on the effect from time series i on time series j , for

all lags. (Granger Causality).
I Zero-restrictions on the elements of the inverse covariance matrix of

the errors.

which efficiently takes into account the amount of curvature in the likelihood
function in the neighbourhood of the maximum likelihood estimate. To illustrate
the comparison of the two criteria in the current framework, we also calculated
the approximate joint posterior distribution of G and k based on BIC. From this,
the marginal posterior distribution of k gives the probabilities p(k ¼ 1|X) ¼
0.852, p(k ¼ 2|X) ¼ 0.148, and practically zero probabilities for the remaining
values. Here, it is again evident that the BIC approximation assigns considerably
more posterior weight to simpler models.

The most probable Granger causality graphs and their marginal posterior
probabilities are displayed in Figure 1. The posterior probabilities of the most
probable graphs are fairly small as might be expected, since the number of
available observations is only 55. A useful benchmark for comparison is the
uniform distribution over the set of all Granger causality graphs (for a fixed k)
which assigns a probability of roughly 4 � 10)6 to each Granger causality graph.
However, the posterior uncertainty reflects the fact that conclusive inference
about the overall graph structure cannot be easily made on the basis of these data.

Perhaps the most striking feature of Figure 1 is the appearance of the same
simple structure of the E2-graph in all three Granger causality graphs, conveying
the message that conditional on a money innovation, all other innovations are
independent. The marginal posterior probability of this particular E2-graph is
0.131 which should be compared with the benchmark of 1/61 � 0.016 in the
uniform distribution. The second, third and fourth most probable E2-graphs were
all extensions of the simple structure in Figure 1 with exactly one of the
undirected edges between y, b and d added to the graph. The posterior
probabilities of these graphs were all around 0.08.

The presence of an edge between any two specific variables is most accurately
inferred from the marginal posterior probability of this hypothesis. Table I
displays these posterior probabilities, both for directed and undirected edges. For
comparison, we also calculated these values based on the BIC approximation
(Table II), and generally, apart from some exceptions, the resulting probability of
any edge was considerably lower than the FML-based value, which is consistent
with earlier findings.

An important issue in macroeconomics is whether or not money has any effect
on real variables such as real GDP (see Walsh, 1998, Ch. 1 for a review of
some empirical evidence and further references). The posterior probability

Figure 1. Granger causality graphs with highest posterior probability for macroeconomic data.

149ASSESSING CAUSALITY IN VECTOR AUTOREGRESSIONS

� Blackwell Publishing Ltd 2005
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BAYESIAN HYPOTHESIS TESTING
I Hypothesis testing is just a special case of model selection:

M0 :y1, ..., yn
iid∼ Bernoulli(θ0)

M1 :y1, ..., yn
iid∼ Bernoulli(θ), θ ∼ Beta(α, β)

p(y1, ..., yn|M0) = θs0(1− θ0)
f ,

p(y1, ..., yn|M1) =
∫ 1

0
θs(1− θ)f B(α, β)−1θα−1(1− θ)β−1dθ

= B(α + s, β + f )/B(α, β).

I Posterior model probabilities

Pr(Mk |y1, ..., yn) ∝ p(y1, ..., yn|Mk)Pr(Mk), for k = 0, 1.

I Equivalent to using ’spike-and-slab’ prior:

p(θ) = πIθ0(θ) + (1− π)Beta(α, β)

I Note: data can now support a null hypothesis (not only reject it).
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SPIKE-AND-SLAB PRIOR
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SPIKE-AND-SLAB PRIOR FOR VARIABLE SELECTION

when K=5. Also, the MCMC algorithm struggles when we use KZ4 separate components in the split-t model, with lower
acceptable probabilities and higher risk of getting stuck in a local mode. Moreover, the split-t model with separate
components has one dominant component which is very similar to the one-component model, except for the five-
component model which seems to pick up a more complicated structure. We will describe the estimation results for the
one-component model in detail below.

Our way to assess the quality of the predictive densities in an absolute sense is to investigate the normalized residuals
from the model. A normalized residual is defined as F�1

½FðytÞ�, where Fð�Þ is the cumulative predictive distribution, where
the parameter have been integrated out with respect to the posterior distribution based on the estimation sample, so the
residuals in Fig. 3 are therefore out-of-sample. If the model is correct, the normalized residuals should be iid N(0,1), see e.g.
Berkowitz (2001). It is clear from Fig. 3 that even the SMR with largest LPDS produces much to large residuals during the
most volatile period, and so does the GARCH(1,1) and t-GARCH(1, 1). As indicated in the graph, 19.5% of the normalized
residuals from the SMR(4) lie outside a 95% probability interval according to the N(0,1) reference distribution. The
SAGM(1) does better than the SMR, but this model also generates to many outliers: 3.5% of the residuals are outside the
99% reference interval. The remaining four models in Fig. 3 have rather similar seemingly homoscedastic and independent
residuals, and they all have close to the right coverage. The one-component split-t model is doing remarkably well during
this very difficult time period.

We now take a more detailed look at the inferences from the one-component split-t model. Table 4 presents summaries
of the posterior distribution. The results from the variable selection among the covariates in the scale parameter is very
similar to the results for the variance function in Villani et al. (2009): the covariates MaxMin95, LastWeek and LastMonth

have a posterior inclusion probability close to one, and all other covariates are essentially excluded. There is support for

Table 4
Posterior summary of the one-component split-t model.a

Parameters Mean Stdev Post.Incl. IF

Location m
Const 0.084 0.019 – 9.919

Scale f
Const 0.402 0.035 – 7.125

LastDay �0.190 0.120 0.036 0.903

LastWeek �0.738 0.193 0.985 18.519
LastMonth �0.444 0.086 0.999 4.133
CloseAbs95 0.194 0.233 0.035 1.445

CloseSqr95 0.107 0.226 0.023 2.715

MaxMin95 1.124 0.086 1.000 6.012
CloseAbs80 0.097 0.153 0.013 –

CloseSqr80 0.143 0.143 0.021 –

MaxMin80 �0.022 0.200 0.017 –

Degrees of freedom n
Const 2.482 0.238 – 5.708

LastDay 0.504 0.997 0.112 2.899

LastWeek �2.158 0.926 0.638 5.463
LastMonth 0.307 0.833 0.089 5.560

CloseAbs95 0.718 1.437 0.229 3.020

CloseSqr95 1.350 1.280 0.279 2.758

MaxMin95 1.130 1.488 0.222 6.564

CloseAbs80 0.035 1.205 0.101 2.789

CloseSqr80 0.363 1.211 0.112 3.330

MaxMin80 �1.672 1.172 0.254 4.178

Skewness l
Const �0.104 0.033 – 10.423

LastDay �0.159 0.140 0.027 1.170

LastWeek �0.341 0.170 0.135 8.909

LastMonth �0.076 0.112 0.016 –

CloseAbs95 �0.021 0.096 0.008 –

CloseSqr95 �0.003 0.108 0.006 –

MaxMin95 0.016 0.075 0.008 –

CloseAbs80 0.060 0.115 0.009 –

CloseSqr80 0.059 0.111 0.010 –

MaxMin80 0.093 0.096 0.013 –

a The posterior mean, standard deviation and inefficiency factors (IF) are computed conditional on a covariate being in the model. The IFs are not

computed for parameters with posterior probabilities smaller than 0.02.

F. Li et al. / Journal of Statistical Planning and Inference 140 (2010) 3638–36543650
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PROPERTIES OF BAYESIAN MODEL COMPARISON

I Coherence of pair-wise comparisons

B12 = B13 · B32

I Consistency when true model is inM = {M1, ...,MK}

Pr (M = MTRUE |y)→ 1 as n→ ∞

I “KL-consistency” when MTRUE /∈ M

Pr (M = M∗|y)→ 1 as n→ ∞

where M∗ is the model that minimizes Kullback-Leibler distance
between pM(y) and pTRUE (y).

I Smaller models always win when priors are very vague.
I Improper priors cannot be used for model comparison.
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MARGINAL LIKELIHOOD MEASURES OUT-OF-SAMPLE

PREDICTIVE PERFORMANCE

I The marginal likelihood can be decomposed as

p(y1, ..., yn) = p(y1)p(y2|y1) · · · p(yn|y1, y2, ..., yn−1)

I If we assume that yi is independent of y1, ..., yi−1 conditional on θ:

p(yi |y1, ..., yi−1) =
∫

p(yi |θ)p(θ|y1, ..., yi−1)dθ

I The prediction of y1 is based on the prior of θ, and is therefore
sensitive to the prior.

I The prediction of yn uses almost all the data to infer θ. Very little
influenced by the prior when n is not small.
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NORMAL EXAMPLE

I Model: y1, ..., yn|θ ∼ N(θ, σ2) with σ2 known.
I Prior: θ ∼ N(0, κ2σ2).
I Intermediate posterior at time i − 1

θ|y1, ..., yi−1 ∼ N

[
wi (κ) · ȳi−1,

σ2

i − 1+ κ−2

]
where wi (κ) =

i−1
i−1+κ−2 .

I Predictive density at time i − 1

yi |y1, ..., yi−1 ∼ N

[
wi (κ) · ȳi−1, σ2

(
1+

1
i − 1+ κ−2

)]

I Terms with i large: yi |y1, ..., yi−1
approx∼ N

(
ȳi−1, σ2), not sensitive to κ

I For i = 1, y1 ∼ N
[
0, σ2 (1+ 1

κ−2

)]
can be very sensitive to κ.
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FIRST OBSERVATION IS SENSITIVE TO κ
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FIRST OBSERVATION IS SENSITIVE TO κ
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LOG PREDICTIVE SCORE - LPS

I To reduce sensitivity to the prior: sacrifice n∗ observations to train the
prior into a better posterior.

I Predictive density score: PS

PS(n∗) = p(yn∗+1|y1, ..., yn∗) · · · p(yn|y1, ..., yn−1)

I Usually report on log scale: Log Predictive Score (LPS).

I But which observations to train on (and which to test on)?

I Straightforward for time series.

I Cross-sectional data: cross-validation.
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MODEL AVERAGING

I Let γ be a quanitity with an interpretation which stays the same
across the two models.

I Example: Prediction γ = (yT+1, ..., yT+h)’.

I The marginal posterior distribution of γ reads

p(γ|y) = p(M1|y)p1(γ|y) + p(M2|y)p2(γ|y),

where pk(γ|y) is the marginal posterior of γ conditional on model k .

I Predictive distribution includes three sources of uncertainty:
I Future errors/disturbances (e.g. the ε’s in a regression)
I Parameter uncertainty (the predictive distribution has the parameters

integrated out by their posteriors)
I Model uncertainty (by model averaging)
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MARGINAL LIKELIHOOD IN CONJUGATE MODELS
I Computing the marginal likelihood requires integration w.r.t. θ.
I Short cut for conjugate models by rearragement of Bayes’ theorem:

p(y) =
p(y |θ)p(θ)
p(θ|y)

I Bernoulli model example

p(θ) =
1

B(α, β)
θα−1(1− θ)β−1

p(y |θ) = θs(1− θ)f

p(θ|y) = 1
B(α + s, β + f )

θα+s−1(1− θ)β+f−1

I Marginal likelihood

p(y) =
θs(1− θ)f 1

B(α,β)
θα−1(1− θ)β−1

1
B(α+s,β+f )

θα+s−1(1− θ)β+f−1
=

B(α + s, β + f )

B(α, β)
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COMPUTING THE MARGINAL LIKELIHOOD
I Usually difficult to evaluate the integral

p(y) =
∫

p(y|θ)p(θ)dθ = Ep(θ)[p(y|θ)].

I Draw from the prior θ(1), ..., θ(N) and use the Monte Carlo estimate

p̂(y) =
1
N

N

∑
i=1

p(y|θ(i)).

Unstable if the posterior is somewhat different from the prior.
I Importance sampling. Let θ(1), ..., θ(N) be iid draws from g(θ).∫

p(y|θ)p(θ)dθ =
∫

p(y|θ)p(θ)
g(θ)

g(θ)dθ ≈ N−1
N

∑
i=1

p(y|θ(i))p(θ(i))
g(θ(i))

I Modified Harmonic mean: g(θ) = N(θ̃, Σ̃) · Ic(θ), where θ̃ and Σ̃ is
the posterior mean and covariance matrix estimated from an MCMC
chain, and Ic(θ) = 1 if (θ − θ̃)′Σ̃−1(θ − θ̃) ≤ c .
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COMPUTING THE MARGINAL LIKELIHOOD, CONT.
I Rearrangement of Bayes’ theorem: p(y) = p(y|θ)p(θ)/p(θ|y).
I We must know the posterior, including the normalization constant.

I But we only need to know p(θ|y) in a single point θ0.
I Kernel density estimator to approximate p(θ0|y). Unstable.

I Chib (1995, JASA) provide better solutions for Gibbs sampling.
I Chib-Jeliazkov (2001, JASA) generalizes to MH algorithm (good for

IndepMH, terrible for RWM).

I Reversible Jump MCMC (RJMCMC) for model inference.
I MCMC methods that moves in model space.
I Proportion of iterations spent in model k estimates Pr(Mk |y).
I Usually hard to find efficient proposals. Sloooow convergence.

I Bayesian nonparametrics (e.g. Dirichlet process priors).
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APPROXIMATE MARGINAL LIKELIHOODS
I Taylor approximation of the log posterior

ln p(y|θ)p(θ) ≈ ln p(y|θ̂) + ln p(θ̂)− 1
2
Jθ̂,y(θ − θ̂)2,

p(y|θ)p(θ) ≈ p(y|θ̂)p(θ̂) exp
[
−1
2
Jθ̂,y(θ − θ̂)2

]
I The Laplace approximation:

ln p̂(y) = ln p(y|θ̂) + lnp(θ̂) +
1
2
ln
∣∣∣J−1

θ̂,y

∣∣∣+ p

2
ln(2π),

where p is the number of unrestricted parameters in the model.
I Note that θ̂ and Jθ̂,ycan be obtained with numerical optimization

with BFGS update of Hessian.
I The BIC approximation is obtained if Jθ̂,y behaves like n · Ip in large

samples
ln p̂(y) = ln p(y|θ̂) + ln p(θ̂)− p

2
ln n.
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AND HEY! ... LET’S BE CAREFUL OUT THERE.

I Be especially careful with Bayesian model comparison when

I The compared models are
I very different in structure
I severly misspecified
I very complicated (black boxes).

I The priors for the parameters in the models are
I not carefully elicited
I only weakly informative
I not matched across models.

I The data
I has outliers (in all models)
I has a multivariate response.
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HASTA LA VICTORIA SIEMPRE!
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